Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima minamimachi, Chuo-ku, Kobe 650-0047, Japan.
Soft Matter. 2024 Mar 20;20(12):2739-2749. doi: 10.1039/d3sm01752d.
Collective cellular behavior plays a crucial role in various biological processes, ranging from developmental morphogenesis to pathological processes such as cancer metastasis. Our previous research has revealed that a mutant cell of exhibits collective cell migration, including chain migration and traveling band formation, driven by a unique tail-following behavior at contact sites, which we term "contact following locomotion" (CFL). Here, we uncover an imbalance of forces between the front and rear cells within cell chains, leading to an additional propulsion force in the rear cells. Drawing inspiration from this observation, we introduce a theoretical model that incorporates non-reciprocal cell-cell interactions. Our findings highlight that the non-reciprocal interaction, in conjunction with self-alignment interactions, significantly contributes to the emergence of the observed collective cell migrations. Furthermore, we present a comprehensive phase diagram, showing distinct phases at both low and intermediate cell densities. This phase diagram elucidates a specific regime that corresponds to the experimental system.
群体细胞行为在各种生物学过程中起着至关重要的作用,从发育形态发生到癌症转移等病理过程。我们之前的研究表明,一个 的突变细胞表现出集体细胞迁移,包括链迁移和移动带形成,由接触点处独特的尾随行为驱动,我们称之为“接触跟踪运动”(CFL)。在这里,我们揭示了细胞链中前后细胞之间的力不平衡,导致后细胞中产生额外的推进力。受此观察结果的启发,我们引入了一个包含非互易细胞-细胞相互作用的理论模型。我们的研究结果表明,非互易相互作用与自我对准相互作用一起,对观察到的集体细胞迁移的出现有重要贡献。此外,我们还展示了一个全面的相图,显示了在低和中等细胞密度下的不同相。该相图阐明了与实验系统相对应的特定状态。