Taguchi T, Minami T, Hihara T, Nikaido F, Asai T, Sakai K, Abe Y, Yogo A, Arikawa Y, Kohri H, Tokiyasu A O, Chu C M, Woon W Y, Kodaira S, Kanasaki M, Fukuda Y, Kuramitsu Y
Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
Kansai Institute for Photon Science (KPSI), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan.
Rev Sci Instrum. 2024 Mar 1;95(3). doi: 10.1063/5.0172202.
Solid-state nuclear track detectors (SSNTDs) are often used as ion detectors in laser-driven ion acceleration experiments and are considered to be the most reliable ion diagnostics since they are sensitive only to ions and measure ions one by one. However, ion pit analyses require tremendous time and effort in chemical etching, microscope scanning, and ion pit identification by eyes. From a laser-driven ion acceleration experiment, there are typically millions of microscopic images, and it is practically impossible to analyze all of them by hand. This research aims to improve the efficiency and automation of SSNTD analyses for laser-driven ion acceleration. We use two sets of data obtained from calibration experiments with a conventional accelerator where ions with known nuclides and energies are generated and from actual laser experiments using SSNTDs. After chemical etching and scanning the SSNTDs with an optical microscope, we use machine learning to distinguish the ion etch pits from noises. From the results of the calibration experiment, we confirm highly accurate etch-pit detection with machine learning. We are also able to detect etch pits with machine learning from the laser-driven ion acceleration experiment, which is much noisier than calibration experiments. By using machine learning, we successfully identify ion etch pits ∼105 from more than 10 000 microscopic images with a precision of ≳95%. A million microscopic images can be examined with a recent entry-level computer within a day with high precision. Machine learning tremendously reduces the time consumption on ion etch pit analyses detected on SSNTDs.
固态核径迹探测器(SSNTDs)常用于激光驱动离子加速实验中的离子探测器,并且被认为是最可靠的离子诊断工具,因为它们仅对离子敏感且能逐个测量离子。然而,离子坑分析在化学蚀刻、显微镜扫描以及通过肉眼识别离子坑方面需要耗费大量的时间和精力。在激光驱动离子加速实验中,通常会有数百万张微观图像,实际上不可能手动分析所有这些图像。本研究旨在提高用于激光驱动离子加速的SSNTD分析的效率和自动化程度。我们使用两组数据,一组来自使用传统加速器的校准实验,在该校准实验中产生具有已知核素和能量的离子,另一组来自使用SSNTDs的实际激光实验。在用光学显微镜对SSNTDs进行化学蚀刻和扫描之后,我们使用机器学习从噪声中区分出离子蚀刻坑。从校准实验的结果来看,我们通过机器学习确认了高精度的蚀刻坑检测。我们还能够通过机器学习从比校准实验噪声大得多的激光驱动离子加速实验中检测蚀刻坑。通过使用机器学习,我们成功地从超过10000张微观图像中识别出约10^5个离子蚀刻坑,精度超过95%。使用一台近期的入门级计算机,一天内就能高精度地检查一百万张微观图像。机器学习极大地减少了对SSNTDs上检测到的离子蚀刻坑进行分析的时间消耗。