胃动力图:动态轨迹和递归定量分析评估健康受试者慢波向量运动。
Vectorgastrogram: dynamic trajectory and recurrence quantification analysis to assess slow wave vector movement in healthy subjects.
机构信息
Centro de Investigación e Innovación en Bioingeniería (CI2B), Universitat Politècnica de València (UPV), Valencia, Spain.
出版信息
Phys Eng Sci Med. 2024 Jun;47(2):663-677. doi: 10.1007/s13246-024-01396-y. Epub 2024 Mar 4.
Functional gastric disorders entail chronic or recurrent symptoms, high prevalence and a significant financial burden. These disorders do not always involve structural abnormalities and since they cannot be diagnosed by routine procedures, electrogastrography (EGG) has been proposed as a diagnostic alternative. However, the method still has not been transferred to clinical practice due to the difficulty of identifying gastric activity because of the low-frequency interference caused by skin-electrode contact potential in obtaining spatiotemporal information by simple procedures. This work attempted to robustly identify the gastric slow wave (SW) main components by applying multivariate variational mode decomposition (MVMD) to the multichannel EGG. Another aim was to obtain the 2D SW vectorgastrogram VGG from 4 electrodes perpendicularly arranged in a T-shape and analyse its dynamic trajectory and recurrence quantification (RQA) to assess slow wave vector movement in healthy subjects. The results revealed that MVMD can reliably identify the gastric SW, with detection rates over 91% in fasting postprandial subjects and a frequency instability of less than 5.3%, statistically increasing its amplitude and frequency after ingestion. The VGG dynamic trajectory showed a statistically higher predominance of vertical displacement after ingestion. RQA metrics (recurrence ratio, average length, entropy, and trapping time) showed a postprandial statistical increase, suggesting that gastric SW became more intense and coordinated with a less complex VGG and higher periodicity. The results support the VGG as a simple technique that can provide relevant information on the "global" spatial pattern of gastric slow wave propagation that could help diagnose gastric pathologies.
功能性胃疾病表现为慢性或复发性症状、高患病率和巨大的经济负担。这些疾病并不总是涉及结构异常,由于不能通过常规程序进行诊断,因此提出胃电图(EGG)作为替代诊断方法。然而,由于通过简单程序获取时空信息时皮肤-电极接触电位引起的低频干扰,难以识别胃活动,因此该方法尚未转化为临床实践。本工作尝试通过将多变量变分模态分解(MVMD)应用于多通道 EGG 来稳健地识别胃慢波(SW)主要成分。另一个目的是从垂直排列成 T 形的 4 个电极获得 2D SW 向量胃电图(VGG),并分析其动态轨迹和递归量化分析(RQA),以评估健康受试者中的慢波向量运动。结果表明,MVMD 可以可靠地识别胃 SW,在空腹和餐后受试者中的检测率超过 91%,频率不稳定度小于 5.3%,在摄入后其幅度和频率明显增加。VGG 动态轨迹显示摄入后垂直位移的优势明显更高。RQA 指标(递归比、平均长度、熵和捕获时间)显示餐后统计增加,表明胃 SW 变得更强烈,与更简单的 VGG 和更高的周期性更协调。结果支持 VGG 作为一种简单的技术,可以提供有关胃慢波传播的“全局”空间模式的相关信息,这有助于诊断胃疾病。
相似文献
Dig Dis Sci. 1997-7
Biomed Tech (Berl). 2019-4-24
J Gastroenterol Hepatol. 2005-4
Am J Physiol Gastrointest Liver Physiol. 2001-6
Neurogastroenterol Motil. 2021-5
Am J Physiol Gastrointest Liver Physiol. 2022-10-1
本文引用的文献
Am J Physiol Gastrointest Liver Physiol. 2022-12-1
Front Physiol. 2022-7-22
Neurogastroenterol Motil. 2023-2
Curr Res Food Sci. 2021-4-14
Parkinsonism Relat Disord. 2021-5
J Neurogastroenterol Motil. 2021-4-30
Curr Cardiol Rev. 2021