Zhang Lin, He Yuxin, Deng Wen, Guo Xueliang, Bi Zhaozhao, Zeng Jie, Huang Hui, Zhang Guangye, Xie Chen, Zhang Yong, Hu Xiaotian, Ma Wei, Yuan Yongbo, Yuan Xiaoming
Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, 410083, China.
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China.
Discov Nano. 2024 Mar 4;19(1):39. doi: 10.1186/s11671-024-03982-1.
Organic solar cells (OSCs) are considered as a crucial energy source for flexible and wearable electronics. Pseudo-planar heterojunction (PPHJ) OSCs simplify the solution preparation and morphology control. However, non-halogenated solvent-printed PPHJ often have an undesirable vertical component distribution and insufficient donor/acceptor interfaces. Additionally, the inherent brittleness of non-fullerene small molecule acceptors (NFSMAs) in PPHJ leads to poor flexibility, and the NFSMAs solution shows inadequate viscosity during the printing of acceptor layer. Herein, we propose a novel approach termed polymer-incorporated pseudo-planar heterojunction (PiPPHJ), wherein a small amount of polymer donor is introduced into the NFSMAs layer. Our findings demonstrate that the incorporation of polymer increases the viscosity of acceptor solution, thereby improving the blade-coating processability and overall film quality. Simultaneously, this strategy effectively modulates the vertical component distribution, resulting in more donor/acceptor interfaces and an improved power conversion efficiency of 17.26%. Furthermore, PiPPHJ-based films exhibit superior tensile properties, with a crack onset strain of 12.0%, surpassing PPHJ-based films (9.6%). Consequently, large-area (1 cm) flexible devices achieve a considerable efficiency of 13.30% and maintain excellent mechanical flexibility with 82% of the initial efficiency after 1000 bending cycles. These findings underscore the significant potential of PiPPHJ-based OSCs in flexible and wearable electronics.
有机太阳能电池(OSCs)被认为是柔性和可穿戴电子产品的关键能源。伪平面异质结(PPHJ)有机太阳能电池简化了溶液制备和形貌控制。然而,非卤化溶剂印刷的PPHJ通常具有不理想的垂直组分分布和供体/受体界面不足的问题。此外,PPHJ中非富勒烯小分子受体(NFSMAs)固有的脆性导致柔韧性较差,并且NFSMAs溶液在受体层印刷过程中显示出不足的粘度。在此,我们提出了一种称为聚合物掺入伪平面异质结(PiPPHJ)的新方法,其中将少量聚合物供体引入NFSMAs层。我们的研究结果表明,聚合物的掺入增加了受体溶液的粘度,从而提高了刮刀涂布的加工性能和整体薄膜质量。同时,该策略有效地调节了垂直组分分布,产生了更多的供体/受体界面,并将功率转换效率提高到17.26%。此外,基于PiPPHJ的薄膜表现出优异的拉伸性能,裂纹起始应变为12.0%,超过了基于PPHJ的薄膜(9.6%)。因此,大面积(1平方厘米)柔性器件实现了13.30%的可观效率,并在1000次弯曲循环后保持了82%的初始效率,具有出色的机械柔韧性。这些发现突出了基于PiPPHJ的有机太阳能电池在柔性和可穿戴电子产品中的巨大潜力。