Suppr超能文献

红外手术纹身:用于量化组织跟踪和映射的数据集。

Surgical Tattoos in Infrared: A Dataset for Quantifying Tissue Tracking and Mapping.

作者信息

Schmidt Adam, Mohareri Omid, DiMaio Simon P, Salcudean Septimiu E

出版信息

IEEE Trans Med Imaging. 2024 Jul;43(7):2634-2645. doi: 10.1109/TMI.2024.3372828. Epub 2024 Jul 1.

Abstract

Quantifying performance of methods for tracking and mapping tissue in endoscopic environments is essential for enabling image guidance and automation of medical interventions and surgery. Datasets developed so far either use rigid environments, visible markers, or require annotators to label salient points in videos after collection. These are respectively: not general, visible to algorithms, or costly and error-prone. We introduce a novel labeling methodology along with a dataset that uses said methodology, Surgical Tattoos in Infrared (STIR). STIR has labels that are persistent but invisible to visible spectrum algorithms. This is done by labelling tissue points with IR-fluorescent dye, indocyanine green (ICG), and then collecting visible light video clips. STIR comprises hundreds of stereo video clips in both in vivo and ex vivo scenes with start and end points labelled in the IR spectrum. With over 3,000 labelled points, STIR will help to quantify and enable better analysis of tracking and mapping methods. After introducing STIR, we analyze multiple different frame-based tracking methods on STIR using both 3D and 2D endpoint error and accuracy metrics. STIR is available at https://dx.doi.org/10.21227/w8g4-g548.

摘要

量化内窥镜环境中组织跟踪和映射方法的性能对于实现医疗干预和手术的图像引导及自动化至关重要。迄今为止开发的数据集要么使用刚性环境、可见标记,要么要求注释者在采集后对视频中的显著点进行标注。这些分别存在以下问题:不具有通用性、算法可见、成本高且容易出错。我们引入了一种新颖的标注方法以及一个使用该方法的数据集——红外手术纹身(STIR)。STIR具有持久但对可见光谱算法不可见的标签。这是通过用红外荧光染料吲哚菁绿(ICG)标记组织点,然后收集可见光视频片段来实现的。STIR包含数百个体内和体外场景的立体视频片段,其起点和终点在红外光谱中标注。有超过3000个标注点,STIR将有助于量化并更好地分析跟踪和映射方法。在介绍STIR之后,我们使用3D和2D端点误差及准确性指标在STIR上分析了多种不同的基于帧的跟踪方法。STIR可在https://dx.doi.org/10.21227/w8g4 - g548获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验