Suppr超能文献

职业自行车队为即将到来的比赛分配自行车手。

Pro-cycling team cyclist assignment for an upcoming race.

机构信息

Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.

Israel - Premier Tech, Israel.

出版信息

PLoS One. 2024 Mar 4;19(3):e0297270. doi: 10.1371/journal.pone.0297270. eCollection 2024.

Abstract

Professional bicycle racing is a popular sport that has attracted significant attention in recent years. The evolution and ubiquitous use of sensors allow cyclists to measure many metrics including power, heart rate, speed, cadence, and more in training and racing. In this paper we explore for the first time assignment of a subset of a team's cyclists to an upcoming race. We introduce RaceFit, a model that recommends, based on recent workouts and past assignments, cyclists for participation in an upcoming race. RaceFit consists of binary classifiers that are trained on pairs of a cyclist and a race, described by their relevant properties (features) such as the cyclist's demographic properties, as well as features extracted from his workout data from recent weeks; as well additional properties of the race, such as its distance, elevation gain, and more. Two main approaches are introduced in recommending on each stage in a race and aggregate from it to the race, or on the entire race. The model training is based on binary label which represent participation of cyclist in a race (or in a stage) in past events. We evaluated RaceFit rigorously on a large dataset of three pro-cycling teams' cyclists and race data achieving up to 80% precision@i. The first experiment had shown that using TP or STRAVA data performs the same. Then the best-performing parameters of the framework are using 5 weeks time window, imputation was effective, and the CatBoost classifier performed best. However, the model with any of the parameters performed always better than the baselines, in which the cyclists are assigned based on their popularity in historical data. Additionally, we present the top-ranked predictive features.

摘要

职业自行车赛是一项近年来备受关注的热门运动。传感器的不断发展和广泛应用使得自行车运动员在训练和比赛中能够测量许多指标,包括功率、心率、速度、踏频等。在本文中,我们首次探索了将一个车队的部分自行车运动员分配到即将到来的比赛中的问题。我们引入了 RaceFit,这是一种基于最近的训练和过去的分配来推荐自行车运动员参加即将到来的比赛的模型。RaceFit 由二进制分类器组成,这些分类器是基于自行车运动员和比赛的相关属性(特征)进行训练的,例如自行车运动员的人口统计学属性,以及从最近几周的训练数据中提取的特征;以及比赛的其他属性,例如比赛的距离、海拔上升等。在推荐每个比赛阶段和从该阶段汇总到比赛,或在整个比赛中,引入了两种主要方法。模型训练基于二进制标签,该标签代表自行车运动员在过去比赛中的参赛情况(或某个阶段的参赛情况)。我们在三支职业自行车队的自行车运动员和比赛数据的大型数据集上对 RaceFit 进行了严格评估,达到了 80%的精度@i。第一个实验表明,使用 TP 或 STRAVA 数据的效果相同。然后,框架的最佳性能参数使用 5 周的时间窗口,插值是有效的,CatBoost 分类器表现最好。然而,与基于历史数据中受欢迎程度分配自行车运动员的基线相比,任何参数的模型都始终表现更好。此外,我们还展示了排名最高的预测特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfdc/10911621/9480be772843/pone.0297270.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验