Suppr超能文献

不要以貌取人或健康应用程序:用户评分和下载量与质量无关。

Don't judge a book or health app by its cover: User ratings and downloads are not linked to quality.

机构信息

School of Computing, Ulster University, Belfast, United Kingdom.

ORCHA, Sci-Tech Daresbury, Violet V2, Daresbury, United Kingdom.

出版信息

PLoS One. 2024 Mar 4;19(3):e0298977. doi: 10.1371/journal.pone.0298977. eCollection 2024.

Abstract

OBJECTIVE

To analyse the relationship between health app quality with user ratings and the number of downloads of corresponding health apps.

MATERIALS AND METHODS

Utilising a dataset of 881 Android-based health apps, assessed via the 300-point objective Organisation for the Review of Care and Health Applications (ORCHA) assessment tool, we explored whether subjective user-level indicators of quality (user ratings and downloads) correlate with objective quality scores in the domains of user experience, data privacy and professional/clinical assurance. For this purpose, we applied spearman correlation and multiple linear regression models.

RESULTS

For user experience, professional/clinical assurance and data privacy scores, all models had very low adjusted R squared values (< .02). Suggesting that there is no meaningful link between subjective user ratings or the number of health app downloads and objective quality measures. Spearman correlations suggested that prior downloads only had a very weak positive correlation with user experience scores (Spearman = .084, p = .012) and data privacy scores (Spearman = .088, p = .009). There was a very weak negative correlation between downloads and professional/clinical assurance score (Spearman = -.081, p = .016). Additionally, user ratings demonstrated a very weak correlation with no statistically significant correlations observed between user ratings and the scores (all p > 0.05). For ORCHA scores multiple linear regression had adjusted R-squared = -.002.

CONCLUSION

This study highlights that widely available proxies which users may perceive to signify the quality of health apps, namely user ratings and downloads, are inaccurate predictors for estimating quality. This indicates the need for wider use of quality assurance methodologies which can accurately determine the quality, safety, and compliance of health apps. Findings suggest more should be done to enable users to recognise high-quality health apps, including digital health literacy training and the provision of nationally endorsed "libraries".

摘要

目的

分析健康应用程序质量与用户评分以及相应健康应用程序下载量之间的关系。

材料与方法

利用 881 个基于 Android 的健康应用程序数据集,通过 300 分的客观护理和健康应用程序评估组织(ORCHA)评估工具进行评估,我们探讨了用户层面的质量指标(用户评分和下载量)是否与用户体验、数据隐私和专业/临床保障领域的客观质量评分相关。为此,我们应用了 Spearman 相关性和多元线性回归模型。

结果

对于用户体验、专业/临床保障和数据隐私评分,所有模型的调整 R 平方值均非常低(<0.02)。这表明主观用户评分或健康应用程序下载量与客观质量衡量标准之间没有有意义的联系。Spearman 相关性表明,之前的下载量仅与用户体验评分(Spearman = 0.084,p = 0.012)和数据隐私评分(Spearman = 0.088,p = 0.009)有非常弱的正相关。下载量与专业/临床保障评分之间存在非常弱的负相关(Spearman = -0.081,p = 0.016)。此外,用户评分与客观评分之间存在非常弱的相关性,没有观察到任何有统计学意义的相关性(所有 p > 0.05)。对于 ORCHA 评分,多元线性回归的调整 R 平方值为 -0.002。

结论

本研究表明,用户可能认为可代表健康应用程序质量的广泛可用代理指标(即用户评分和下载量)是不准确的质量估计预测指标。这表明需要更广泛地使用质量保证方法,以准确确定健康应用程序的质量、安全性和合规性。研究结果表明,应采取更多措施使用户能够识别高质量的健康应用程序,包括数字健康素养培训和提供国家认可的“图书馆”。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f4c/10911617/8a0a40a652fe/pone.0298977.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验