Suppr超能文献

基于改进的BGNet立体匹配框架的实时双目视觉定位系统。

Real-time binocular visual localization system based on the improved BGNet stereo matching framework.

作者信息

Qu Zanxi, Li Li, Jin Weiqi, Yang Ye

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2024 Mar 1;41(3):500-509. doi: 10.1364/JOSAA.499820.

Abstract

Binocular vision technology is widely used to acquire three-dimensional information of images because of its low cost. In recent years, the use of deep learning for stereo matching has shown promising results in improving the measurement stability of binocular vision systems, but the real-time performance in high-precision networks is typically poor. Therefore, this study constructed a deep-learning-based stereo matching binocular vision system based on the BGLGA-Net, which combines the advantages of past networks. Experiments showed that the ability to detect the edges of foreground objects was enhanced. The network was used to build a system on the Xavier NX. The measurement accuracy and stability were better than those of traditional algorithms.

摘要

双目视觉技术因其成本低而被广泛用于获取图像的三维信息。近年来,将深度学习用于立体匹配在提高双目视觉系统的测量稳定性方面已显示出有前景的结果,但高精度网络的实时性能通常较差。因此,本研究构建了一种基于BGLGA-Net的基于深度学习的立体匹配双目视觉系统,该系统结合了以往网络的优点。实验表明,检测前景物体边缘的能力得到了增强。该网络被用于在Xavier NX上构建一个系统。测量精度和稳定性优于传统算法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验