Moradi Moslem, Shklyaev Oleg E, Balazs Anna C
Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261.
Proc Natl Acad Sci U S A. 2024 Mar 12;121(11):e2319777121. doi: 10.1073/pnas.2319777121. Epub 2024 Mar 4.
Enzymatic reactions in solution drive the convection of confined fluids throughout the enclosing chambers and thereby couple the processes of reaction and convection. In these systems, the energy released from the chemical reactions generates a force, which propels the fluids' spontaneous motion. Here, we use theoretical and computational modeling to determine how reaction-convection can be harnessed to tailor and control the dynamic behavior of soft matter immersed in solution. Our model system encompasses an array of surface-anchored, flexible posts in a millimeter-sized, fluid-filled chamber. Selected posts are coated with enzymes, which react with dissolved chemicals to produce buoyancy-driven fluid flows. We show that these chemically generated flows exert a force on both the coated (active) and passive posts and thus produce regular, self-organized patterns. Due to the specificity of enzymatic reactions, the posts display controllable kaleidoscopic behavior where one regular pattern is smoothly morphed into another with the addition of certain reactants. These spatiotemporal patterns also form "fingerprints" that distinctly characterize the system, reflecting the type of enzymes used, placement of the enzyme-coated posts, height of the chamber, and bending modulus of the elastic posts. The results reveal how reaction-convection provides concepts for designing soft matter that readily switches among multiple morphologies. This behavior enables microfluidic devices to be spontaneously reconfigured for specific applications without construction of new chambers and the fabrication of standalone sensors that operate without extraneous power sources.
溶液中的酶促反应驱动封闭腔室内受限流体的对流,从而将反应和对流过程耦合起来。在这些系统中,化学反应释放的能量产生一种力,推动流体自发运动。在此,我们使用理论和计算模型来确定如何利用反应 - 对流来定制和控制浸入溶液中的软物质的动态行为。我们的模型系统包括一个毫米级、充满流体的腔室内一系列表面锚定的柔性柱体。选定的柱体涂有酶,这些酶与溶解的化学物质发生反应,以产生浮力驱动的流体流动。我们表明,这些化学产生的流动对涂覆(活性)柱体和被动柱体都施加力,从而产生规则的、自组织的图案。由于酶促反应的特异性,柱体表现出可控的万花筒行为,其中随着添加某些反应物,一种规则图案会平滑地转变为另一种图案。这些时空图案还形成“指纹”,可清晰地表征该系统,反映所用酶的类型、酶涂覆柱体的位置、腔室的高度以及弹性柱体的弯曲模量。结果揭示了反应 - 对流如何为设计能在多种形态之间轻松切换的软物质提供概念。这种行为使微流体装置能够针对特定应用自发地重新配置,而无需构建新的腔室,也无需制造独立的、无需外部电源即可运行的传感器。