Suppr超能文献

利用高通量生物化学发现萤火虫荧光素酶的红移突变。

Discovery of Red-Shifting Mutations in Firefly Luciferase Using High-Throughput Biochemistry.

机构信息

W.M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States.

Department of Biology, Pomona College, Claremont, California 91711, United States.

出版信息

Biochemistry. 2024 Mar 19;63(6):733-742. doi: 10.1021/acs.biochem.3c00708. Epub 2024 Mar 4.

Abstract

luciferase (FLuc) has proven a valuable tool for bioluminescence imaging, but much of the light emitted from the native enzyme is absorbed by endogenous biomolecules. Thus, luciferases displaying red-shifted emission enable higher resolution during deep-tissue imaging. A robust model of how protein structure determines emission color would greatly aid the engineering of red-shifted mutants, but no consensus has been reached to date. In this work, we applied deep mutational scanning to systematically assess 20 functionally important amino acid positions on FLuc for red-shifting mutations, predicting that an unbiased approach would enable novel contributions to this debate. We report dozens of red-shifting mutations as a result, a large majority of which have not been previously identified. Further characterization revealed that mutations N229T and T352M, in particular, bring about unimodal emission with the majority of photons being >600 nm. The red-shifting mutations identified by this high-throughput approach provide strong biochemical evidence for the multiple-emitter mechanism of color determination and point to the importance of a water network in the enzyme binding pocket for altering the emitter ratio. This work provides a broadly applicable mutational data set tying FLuc structure to emission color that contributes to our mechanistic understanding of emission color determination and should facilitate further engineering of improved probes for deep-tissue imaging.

摘要

荧光素酶(FLuc)已被证明是生物发光成像的一种有价值的工具,但天然酶发出的大部分光被内源性生物分子吸收。因此,发射红移的荧光酶使深层组织成像具有更高的分辨率。一种关于蛋白质结构如何决定发射颜色的强大模型将极大地帮助工程改造红移突变体,但迄今为止尚未达成共识。在这项工作中,我们应用深度突变扫描系统地评估了 FLuc 上 20 个功能重要的氨基酸位置的红移突变,预测这种无偏方法将为这一争论做出新的贡献。我们报告了数十种红移突变,其中大多数以前没有被发现。进一步的表征表明,突变 N229T 和 T352M 尤其带来了单峰发射,其中大部分光子>600nm。这种高通量方法鉴定的红移突变为颜色决定的多发射器机制提供了强有力的生化证据,并指出酶结合口袋中的水网络对于改变发射器比的重要性。这项工作提供了一个广泛适用的突变数据集,将 FLuc 结构与发射颜色联系起来,有助于我们对发射颜色决定机制的理解,并应促进进一步工程改造用于深层组织成像的改良探针。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b93e/10956436/77070bba336a/bi3c00708_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验