Bond Christopher R, Katz Howard E, Frydrych Daniel J, Rose David B G, Miranda Daniel
Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.
W. L. Gore and Associates, Elkton, Maryland 21922, United States.
ACS Appl Mater Interfaces. 2024 Mar 13;16(10):12873-12885. doi: 10.1021/acsami.3c18777. Epub 2024 Mar 4.
Organic field-effect transistors (OFETs) were fabricated using three high-surface area and flexible expanded-poly(tetrafluoroethylene) (ePTFE) membranes in gate dielectrics, along with the semiconducting polymer poly[2,5-bis(2-octyldodecyl)pyrrolo[3,4-]pyrrole-1,4(2,5)-dione-3,6-diyl)--(2,2':5',2″:5″,2‴-quaterthiophen-5,5‴-diyl)] (PDPP4T). The transistor behavior of these devices was investigated following annealing at 50, 100, 150, and 200 °C, all sustained for 1 h. For annealing temperatures above 50 °C, the OFETs displayed improved transistor behavior and a significant increase in output current while maintaining similar magnitudes of shifts when subjected to static voltage compared to those kept at ambient temperature. We also tested the response to NO gas for further characterization and for possible applications. The ePTFE-PDPP4T interface of each membrane was characterized via scanning electron microscopy for all four annealing temperatures to derive a model for the hole mobility of the ePTFE-PDPP4T OFETs that accounts for the microporous structure of the ePTFE and consequently adjusts the channel width of the OFET. Using this model, a maximum hole mobility of 1.8 ± 1.0 cm/V s was calculated for the polymer in an ePTFE-PDPP4T OFET annealed at 200 °C, whereas a PDPP4T OFET using only the native silicon wafer oxide as a gate dielectric exhibited a hole mobility of just 0.09 ± 0.03 cm/V s at the same annealing condition. This work demonstrates that responsive semiconducting polymer films can be deposited on nominally nonwetting and extremely bendable membranes, and the charge carrier mobility can be significantly increased compared to their as-prepared state by using thermally durable polymer membranes with unique microstructures as gate dielectrics.
有机场效应晶体管(OFET)是利用三种高表面积且柔性的膨化聚四氟乙烯(ePTFE)膜作为栅极电介质,并结合半导体聚合物聚[2,5-双(2-辛基十二烷基)吡咯并[3,4-c]吡咯-1,4(2,5)-二酮-3,6-二基] - [2,2':5',2″:5″,2‴-四噻吩-5,5‴-二基](PDPP4T)制备而成。在50、100、150和200℃下退火1小时后,对这些器件的晶体管行为进行了研究。对于高于50℃的退火温度,OFET表现出改善的晶体管行为和输出电流的显著增加,同时与保持在环境温度下的器件相比,在施加静态电压时保持类似大小的偏移。我们还测试了对NO气体的响应,以进行进一步表征和可能的应用。通过扫描电子显微镜对所有四种退火温度下每种膜的ePTFE-PDPP4T界面进行了表征,以推导ePTFE-PDPP4T OFET空穴迁移率的模型,该模型考虑了ePTFE的微孔结构,从而调整了OFET的沟道宽度。使用该模型,对于在200℃退火的ePTFE-PDPP4T OFET中的聚合物,计算出最大空穴迁移率为1.8±1.0 cm²/V·s,而在相同退火条件下,仅使用天然硅晶圆氧化物作为栅极电介质的PDPP4T OFET的空穴迁移率仅为0.09±0.03 cm²/V·s。这项工作表明,响应性半导体聚合物薄膜可以沉积在名义上不润湿且极易弯曲的膜上,并且通过使用具有独特微观结构的热耐用聚合物膜作为栅极电介质,与它们的制备状态相比,电荷载流子迁移率可以显著提高。