Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada.
Department of Radiation Oncology, Simcoe Muskoka Regional Cancer Program, Royal Victoria Regional Health Centre, University of Toronto, Toronto, Ontario, Canada.
Neuro Oncol. 2024 Mar 4;26(12 Suppl 2):S3-S16. doi: 10.1093/neuonc/noad258.
Chemoradiotherapy is the standard treatment after maximal safe resection for glioblastoma (GBM). Despite advances in molecular profiling, surgical techniques, and neuro-imaging, there have been no major breakthroughs in radiotherapy (RT) volumes in decades. Although the majority of recurrences occur within the original gross tumor volume (GTV), treatment of a clinical target volume (CTV) ranging from 1.5 to 3.0 cm beyond the GTV remains the standard of care. Over the past 15 years, the incorporation of standard and functional MRI sequences into the treatment workflow has become a routine practice with increasing adoption of MR simulators, and new integrated MR-Linac technologies allowing for daily pre-, intra- and post-treatment MR imaging. There is now unprecedented ability to understand the tumor dynamics and biology of GBM during RT, and safe CTV margin reduction is being investigated with the goal of improving the therapeutic ratio. The purpose of this review is to discuss margin strategies and the potential for adaptive RT for GBM, with a focus on the challenges and opportunities associated with both online and offline adaptive workflows. Lastly, opportunities to biologically guide adaptive RT using non-invasive imaging biomarkers and the potential to define appropriate volumes for dose modification will be discussed.
放化疗是胶质母细胞瘤(GBM)最大安全切除术后的标准治疗方法。尽管在分子谱分析、手术技术和神经影像学方面取得了进展,但几十年来放疗(RT)体积没有重大突破。尽管大多数复发发生在原始大体肿瘤体积(GTV)内,但仍将 GTV 外 1.5 至 3.0 厘米范围内的临床靶体积(CTV)的治疗作为标准治疗方案。在过去的 15 年中,将标准和功能 MRI 序列纳入治疗工作流程已成为常规实践,越来越多的人采用了磁共振模拟器,以及新的集成磁共振-直线加速器技术,可实现每天治疗前、治疗中和治疗后的磁共振成像。现在有了前所未有的能力来了解 GBM 在 RT 期间的肿瘤动力学和生物学特性,正在研究安全的 CTV 边界缩小,以提高治疗效果。本文的目的是讨论 GBM 的边缘策略和适应性 RT 的潜力,重点讨论在线和离线自适应工作流程相关的挑战和机遇。最后,将讨论使用非侵入性成像生物标志物进行生物指导适应性 RT 的机会,以及确定剂量调整适当体积的潜力。