Suppr超能文献

心脏瓣膜和部分心脏移植模型对组织和器官保存方法发展的影响:简要综述。

The impact of heart valve and partial heart transplant models on the development of banking methods for tissues and organs: A concise review.

机构信息

Department of Cardiovascular Surgery, Arkansas Children's Hospital, Little Rock, AR, USA; Division of Research, Alabama College of Osteopathic Medicine, Dothan, AL, USA.

Division of Research, Alabama College of Osteopathic Medicine, Dothan, AL, USA.

出版信息

Cryobiology. 2024 Jun;115:104880. doi: 10.1016/j.cryobiol.2024.104880. Epub 2024 Mar 2.

Abstract

Cryopreserved human heart valves fill a crucial role in the treatment for congenital cardiac anomalies, since the use of alternative mechanical and xenogeneic tissue valves have historically been limited in babies. Heart valve models have been used since 1998 to better understand the impact of cryopreservation variables on the heart valve tissue components with the ultimate goals of improving cryopreserved tissue outcomes and potentially extrapolating results with tissues to organs. Cryopreservation traditionally relies on conventional freezing, employing cryoprotective agents, and slow cooling to sub-zero centigrade temperatures; but it is plagued by the formation of ice crystals and cell damage upon thawing. Researchers have identified ice-free vitrification procedures and developed a new rapid warming method termed nanowarming. Nanowarming is an emerging method that utilizes targeted application of energy at the nanoscale level to rapidly rewarm vitrified tissues, such as heart valves, uniformly for transplantation. Vitrification and nanowarming methods hold great promise for surgery, enabling the storage and transplantation of tissues for various applications, including tissue repair and replacement. These innovations have the potential to revolutionize complex tissue and organ transplantation, including partial heart transplantation. Banking these grafts addresses organ scarcity by extending preservation duration while preserving biological activity with maintenance of structural fidelity. While ice-free vitrification and nanowarming show remarkable potential, they are still in early development. Further interdisciplinary research must be dedicated to exploring the remaining challenges that include scalability, optimizing cryoprotectant solutions, and ensuring long-term viability upon rewarming in vitro and in vivo.

摘要

冷冻保存的人类心脏瓣膜在治疗先天性心脏畸形方面发挥着至关重要的作用,因为替代机械和异种组织瓣膜的使用在婴儿中历来受到限制。自 1998 年以来,心脏瓣膜模型一直被用于更好地了解冷冻保存变量对心脏瓣膜组织成分的影响,最终目标是改善冷冻保存组织的结果,并有可能将组织结果外推到器官。冷冻保存传统上依赖于常规冷冻,使用冷冻保护剂,并缓慢冷却至零下摄氏度温度;但它受到冰晶形成和解冻时细胞损伤的困扰。研究人员已经确定了无冰玻璃化程序,并开发了一种新的快速加热方法,称为纳米加热。纳米加热是一种新兴的方法,利用纳米级水平的靶向能量应用来快速均匀地重新加热玻璃化组织,如心脏瓣膜,用于移植。玻璃化和纳米加热方法为手术提供了很大的前景,使各种应用的组织能够储存和移植,包括组织修复和替代。这些创新有可能彻底改变复杂的组织和器官移植,包括部分心脏移植。通过延长保存时间并保持结构保真度来维持生物活性,存储这些移植物可以解决器官短缺问题。无冰玻璃化和纳米加热显示出显著的潜力,但仍处于早期开发阶段。必须进行进一步的跨学科研究,以探索包括可扩展性、优化冷冻保护剂解决方案以及确保在体外和体内复温后长期存活在内的剩余挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验