Hu Chen, Liu Ji, Li Changjun, Zhao Mang, Wu Jing, Yu Zhong-Zhen, Li Xiaofeng
State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
ACS Appl Mater Interfaces. 2024 Mar 13;16(10):13060-13070. doi: 10.1021/acsami.3c18661. Epub 2024 Mar 4.
Hierarchical structure and surface topography play pivotal roles in developing high-performance solar-driven evaporators for clean water production; however, there exists a notable gap in research addressing simultaneous modulation of internal microstructure and surface topography in hydrogels to enhance both solar steam generation performance and desalination efficiency. Herein, anisotropic poly(vinyl alcohol)/MXene composite hydrogels for efficient solar-driven water evaporation and wastewater purification are fabricated using a template-assisted directional freezing approach followed by precise surface wettability modulation. The resultant composite hydrogels exhibit vertically oriented channels that ensure fast water supply during evaporation, and their poly(vinyl alcohol) skeletons can reduce the vaporization enthalpy of the water in the hydrogels. The incorporation of MXene sheets enables efficient solar light absorption and solar-thermal conversion while providing structural reinforcement to the hydrogels. More importantly, the as-created undulating solar-thermal surface, featuring modulated hydrophilic troughs and hydrophobic crests, significantly enhances solar-thermal conversion efficiency, thereby boosting solar evaporation performances. As a result, the fabricated hydrogel-based evaporator exhibits an impressive evaporation rate of 2.55 kg m h under 1 sun irradiation, coupled with long-term durability and desalination stability. Notably, the outstanding mechanical robustness of the hydrogel further enables high portability through a readily achievable process of reversible dehydration/hydration.
分层结构和表面形貌在开发用于清洁水生产的高性能太阳能驱动蒸发器中起着关键作用;然而,在研究如何同时调节水凝胶的内部微观结构和表面形貌以提高太阳能蒸汽产生性能和脱盐效率方面,存在显著差距。在此,采用模板辅助定向冷冻方法,随后进行精确的表面润湿性调节,制备了用于高效太阳能驱动水蒸发和废水净化的各向异性聚乙烯醇/MXene复合水凝胶。所得复合水凝胶呈现垂直取向的通道,确保蒸发过程中的快速供水,并且其聚乙烯醇骨架可以降低水凝胶中水的汽化焓。MXene片层的加入实现了高效的太阳光吸收和太阳能-热转换,同时为水凝胶提供结构增强作用。更重要的是,所形成的起伏太阳能热表面,具有经调制的亲水槽和疏水脊,显著提高了太阳能-热转换效率,从而提升了太阳能蒸发性能。结果,所制备的基于水凝胶的蒸发器在1个太阳辐照下表现出令人印象深刻的2.55 kg m⁻² h⁻¹的蒸发速率,同时具有长期耐久性和脱盐稳定性。值得注意的是,水凝胶出色的机械坚固性通过易于实现的可逆脱水/水合过程进一步实现了高便携性。