Department of Physiology, Medical School, Jeonbuk National University, 20 Geonji-Ro, Deokjin, Jeonju, Jeollabuk, 54907, Republic of Korea.
Sci Rep. 2024 Mar 5;14(1):5375. doi: 10.1038/s41598-024-52849-z.
Propyl gallate (PG) exhibits an anti-growth effect on various cell types. The present study investigated the impact of PG on the levels of reactive oxygen species (ROS) and glutathione (GSH) in primary human pulmonary fibroblast (HPF) cells. Moreover, the effects of N-acetyl cysteine (NAC, an antioxidant), L-buthionine sulfoximine (BSO, a GSH synthesis inhibitor), and small interfering RNA (siRNAs) against various antioxidant genes on ROS and GSH levels and cell death were examined in PG-treated HPF cells. PG (100-800 μM) increased the levels of total ROS and O at early time points of 30-180 min and 24 h, whereas PG (800-1600 μM) increased GSH-depleted cell number at 24 h and reduced GSH levels at 30-180 min. PG downregulated the activity of superoxide dismutase (SOD) and upregulated the activity of catalase in HPF cells. Treatment with 800 μM PG increased the number of apoptotic cells and cells that lost mitochondrial membrane potential (MMP; ΔΨ). NAC treatment attenuated HPF cell death and MMP (ΔΨ) loss induced by PG, accompanied by a decrease in GSH depletion, whereas BSO exacerbated the cell death and MMP (ΔΨ) loss without altering ROS and GSH depletion levels. Furthermore, siRNA against SOD1, SOD2, or catalase attenuated cell death in PG-treated HPF cells, whereas siRNA against GSH peroxidase enhanced cell death. In conclusion, PG induced cell death in HPF cells by increasing ROS levels and depleting GSH. NAC was found to decrease HPF cell death induced by PG, while BSO enhanced cell death. The findings shed light on how manipulating the antioxidant system influence the cytotoxic effects of PG in HPF cells.
没食子酸丙酯(PG)对各种细胞类型均表现出抑制生长的作用。本研究旨在探讨 PG 对原代人肺成纤维细胞(HPF)中活性氧(ROS)和谷胱甘肽(GSH)水平的影响。此外,还研究了 N-乙酰半胱氨酸(NAC,抗氧化剂)、L-丁硫氨酸亚砜亚胺(BSO,GSH 合成抑制剂)以及针对各种抗氧化基因的小干扰 RNA(siRNA)对 PG 处理的 HPF 细胞中 ROS 和 GSH 水平及细胞死亡的影响。PG(100-800 μM)在 30-180 分钟和 24 小时的早期时间点增加了总 ROS 和 O 的水平,而 PG(800-1600 μM)在 24 小时增加了 GSH 耗竭细胞的数量,并在 30-180 分钟降低了 GSH 水平。PG 下调了 HPF 细胞中超氧化物歧化酶(SOD)的活性并上调了过氧化氢酶的活性。PG 处理增加了凋亡细胞和失去线粒体膜电位(MMP;ΔΨ)的细胞数量。NAC 处理可减轻 PG 诱导的 HPF 细胞死亡和 MMP(ΔΨ)丧失,同时减少 GSH 耗竭,而 BSO 则加剧了细胞死亡和 MMP(ΔΨ)丧失,而不改变 ROS 和 GSH 耗竭水平。此外,针对 SOD1、SOD2 或过氧化氢酶的 siRNA 可减轻 PG 处理的 HPF 细胞中的细胞死亡,而针对谷胱甘肽过氧化物酶的 siRNA 则增强了细胞死亡。总之,PG 通过增加 ROS 水平和耗竭 GSH 诱导 HPF 细胞死亡。NAC 可减少 PG 诱导的 HPF 细胞死亡,而 BSO 则增强了细胞死亡。这些发现揭示了如何操纵抗氧化系统影响 PG 在 HPF 细胞中的细胞毒性作用。