Suppr超能文献

ChatGPT 生成的肌肉骨骼图像的有效性。

Validity of ChatGPT-generated musculoskeletal images.

机构信息

Department of Radiology, Mayo Clinic, Rochester, MN, USA.

Department of Radiology, Holy Family Hospital, New Delhi, India.

出版信息

Skeletal Radiol. 2024 Aug;53(8):1583-1593. doi: 10.1007/s00256-024-04638-y. Epub 2024 Mar 4.

Abstract

OBJECTIVE

In the evolving landscape of medical research and radiology, effective communication of intricate ideas is imperative, with visualizations playing a crucial role. This study explores the transformative potential of ChatGPT4, a powerful Large Language Model (LLM), in automating the creation of schematics and figures for radiology research papers, specifically focusing on its implications for musculoskeletal studies.

MATERIALS AND METHODS

Deploying ChatGPT4, the study aimed to assess the model's ability to generate anatomical images of six large joints-shoulder, elbow, wrist, hip, knee, and ankle. Four variations of a text prompt were utilized, to generate a coronal illustration with annotations for each joint. Evaluation parameters included anatomical correctness, correctness of annotations, aesthetic nature of illustrations, usability of figures in research papers, and cost-effectiveness. Four panellists performed the assessment using a 5-point Likert Scale.

RESULTS

Overall analysis of the 24 illustrations encompassing the six joints of interest (4 of each) revealed significant limitations in ChatGPT4's performance. The anatomical design ranged from poor to good, all of the illustrations received a below-average rating for annotation, with the majority assessed as poor. All of them ranked below average for usability in research papers. There was good agreement between raters across all domains (ICC = 0.61).

CONCLUSION

While LLMs like ChatGPT4 present promising prospects for rapid figure generation, their current capabilities fall short of meeting the rigorous standards demanded by musculoskeletal radiology research. Future developments should focus on iterative refinement processes to enhance the realism of LLM-generated musculoskeletal schematics.

摘要

目的

在医学研究和放射学不断发展的领域中,需要有效地传达复杂的概念,而可视化则起着至关重要的作用。本研究探讨了 ChatGPT4(一种强大的大语言模型(LLM))在自动化生成放射学研究论文图稿方面的变革潜力,特别是针对骨骼肌肉研究的影响。

材料与方法

研究中部署了 ChatGPT4,旨在评估该模型生成六大关节(肩、肘、腕、髋、膝和踝)的解剖图像的能力。使用了四种不同的文本提示变体,为每个关节生成带有标注的冠状图。评估参数包括解剖正确性、标注正确性、插图美观度、在研究论文中使用图稿的便利性以及成本效益。四名评估员使用 5 分李克特量表进行评估。

结果

对涵盖六个感兴趣关节(每个关节 4 个)的 24 个插图的综合分析表明,ChatGPT4 的表现存在显著局限性。解剖设计从差到好不等,所有插图的标注评分均低于平均水平,大多数被评为差。它们在研究论文中的可用性评分均低于平均水平。在所有领域中,评估员之间的一致性较好(ICC=0.61)。

结论

尽管像 ChatGPT4 这样的大语言模型在快速生成图稿方面具有广阔的前景,但它们目前的能力还远远不能满足骨骼肌肉放射学研究的严格要求。未来的发展应侧重于迭代改进过程,以增强 LLM 生成的骨骼肌肉示意图的真实性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验