Li Haiju, Lu Yang, Zhou Shengao, Jing Tongmei, Wang Jing, Ma Chao, Seo Min-Kyo, Yu Liandong
Opt Express. 2024 Feb 12;32(4):5515-5528. doi: 10.1364/OE.515876.
The whispering gallery mode (WGM) optical microresonator sensors are emerging as a promising platform for precise temperature measurements, driven by their excellent sensitivity, resolution and integration. Nevertheless, challenges endure regarding stability, single resonant mode tracking, and real-time monitoring. Here, we demonstrate a temperature measurement approach based on convolutional neural network (CNN), leveraging the recognition of multimode barcode images acquired from a WGM microbottle resonator (MBR) sensor with robust packaged microresonator-taper coupling structure (packaged-MTCS). Our work ensures not only a high sensitivity of -14.28 pm/℃ and remarkable resolution of 3.5 × 10 ℃ across a broad dynamic range of 96 ℃ but also fulfills the demands for real-time temperature measurement with an average detection accuracy of 96.85% and a speed of 0.68s per image. These results highlight the potential of high-performance WGM MBR sensors in various fields and lay the groundwork for stable soliton microcomb excitation through thermal tuning.
耳语画廊模式(WGM)光学微谐振器传感器凭借其出色的灵敏度、分辨率和集成度,正成为精确温度测量的一个有前景的平台。然而,在稳定性、单谐振模式跟踪和实时监测方面仍存在挑战。在此,我们展示了一种基于卷积神经网络(CNN)的温度测量方法,利用从具有坚固封装微谐振器 - 锥形耦合结构(封装 - MTCS)的WGM微瓶谐振器(MBR)传感器获取的多模条形码图像识别技术。我们的工作不仅确保了在96℃的宽动态范围内具有-14.28 pm/℃的高灵敏度和3.5×10℃的显著分辨率,还满足了实时温度测量的需求,平均检测精度为96.85%,每张图像的检测速度为0.68秒。这些结果凸显了高性能WGM MBR传感器在各个领域的潜力,并为通过热调谐实现稳定的孤子微梳激发奠定了基础。