Suppr超能文献

基于神经网络的端到端学习,用于紫外光通信系统中二维信号生成的自适应优化。

Neural-network-based end-to-end learning for adaptive optimization of two-dimensional signal generation in UVLC systems.

作者信息

Jin Ruizhe, Wei Yuan, Zhang Junwen, Shi Jianyang, Chi Nan

出版信息

Opt Express. 2024 Feb 12;32(4):6309-6328. doi: 10.1364/OE.510449.

Abstract

Visible light communication (VLC) benefits from the underwater blue-green window and holds immense potential for underwater wireless communication. In order to address the limitations of various equipment and harsh channel conditions in the underwater visible light communication (UVLC) system, the researchers proposed to use the method of autoencoder (AE) to tap the potential of the system. However, traditional AE schemes involve replacing the transmitting and receiving components of a communication system with a large multilayer perceptron (MLP) network, and they have significant drawbacks due to their reliance on a single network structure. In this paper, a novel 2D adaptive optimization autoencoder (2D-AOAE) framework is proposed to realize adaptive modulation and demodulation of two-dimensional signals. By implementing this scheme, we experimentally achieved a transmission rate of 2.85 Gbps over a 1.2-meter underwater VLC link. Compared to the traditional 32QAM UVLC system, the 2D-AOAE scheme demonstrated a 15.4% data rate increase. Moreover, the 2D-AOAE scheme exhibited a remarkable 73% improvement when compared to the UVLC system utilizing the traditional AE scheme. This significant enhancement highlights the superior performance and capabilities of the 2D-AOAE scheme in terms of transmission rate.

摘要

可见光通信(VLC)受益于水下蓝绿窗口,在水下无线通信方面具有巨大潜力。为了解决水下可见光通信(UVLC)系统中各种设备的局限性和恶劣的信道条件,研究人员提出使用自动编码器(AE)方法来挖掘系统潜力。然而,传统的AE方案涉及用大型多层感知器(MLP)网络替换通信系统的发射和接收组件,并且由于它们依赖单一网络结构而存在显著缺点。本文提出了一种新颖的二维自适应优化自动编码器(2D-AOAE)框架,以实现二维信号的自适应调制和解调。通过实施该方案,我们在1.2米的水下VLC链路实验中实现了2.85 Gbps的传输速率。与传统的32QAM UVLC系统相比,2D-AOAE方案的数据速率提高了15.4%。此外,与使用传统AE方案的UVLC系统相比,2D-AOAE方案表现出显著的73%的提升。这一显著增强突出了2D-AOAE方案在传输速率方面的卓越性能和能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验