Suppr超能文献

有源非线性克尔介质中绝热孤子压缩的捷径

Shortcuts to adiabatic soliton compression in active nonlinear Kerr media.

作者信息

Li Yingjia, Paul Koushik, Novoa David, Chen Xi

出版信息

Opt Express. 2024 Feb 26;32(5):7940-7953. doi: 10.1364/OE.514457.

Abstract

We implement variational shortcuts to adiabaticity for optical pulse compression in an active nonlinear Kerr medium with distributed amplification and spatially varying dispersion and nonlinearity. Starting with the hyperbolic secant ansatz, we employ a variational approximation to systematically derive dynamical equations, establishing analytical relationships linking the amplitude, width, and chirp of the pulse. Through the inverse engineering approach, we manipulate the distributed gain/loss, nonlinearity and dispersion profiles to efficiently compress the optical pulse over a reduced distance with high fidelity. In addition, we explore the dynamical stability of the system to illustrate the advantage of our protocol over conventional adiabatic approaches. Finally, we analyze the impact of tailored higher-order dispersion on soliton self-compression and derive physical constraints on the final soliton width for the complementary case of soliton expansion. The broader implications of our findings extend beyond optical systems, encompassing areas such as cold-atom and magnetic systems highlighting the versatility and relevance of our approach in various physical contexts.

摘要

我们在具有分布式放大以及空间变化的色散和非线性的有源非线性克尔介质中,实现了用于光脉冲压缩的绝热变分捷径。从双曲正割假设出发,我们采用变分近似系统地推导动力学方程,建立起连接脉冲幅度、宽度和啁啾的解析关系。通过逆向工程方法,我们操控分布式增益/损耗、非线性和色散分布,以在较短距离内高效且高保真地压缩光脉冲。此外,我们探究了系统的动力学稳定性,以说明我们的方案相较于传统绝热方法的优势。最后,我们分析了定制高阶色散对孤子自压缩的影响,并针对孤子扩展的互补情况推导了最终孤子宽度的物理约束。我们研究结果的更广泛意义超出了光学系统,涵盖了冷原子和磁性系统等领域,突出了我们方法在各种物理背景下的通用性和相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验