Suppr超能文献

用于去极化主导材料的极化表示。

Polarized representation for depolarization-dominant materials.

作者信息

Jarecki Quinn, Kupinski Meredith

出版信息

Opt Express. 2024 Feb 26;32(5):8262-8283. doi: 10.1364/OE.512146.

Abstract

The light-matter interactions which occur in common indoor environments are strongly depolarizing, but the relatively small polarization attributes can be informative. This information is used in applications such as physics-based rendering and shape-from-polarization. Look-up table polarized bidirectional reflectance distribution functions (pBRDFs) for indoor materials are available, but closed-form representations are advantageous for their ease of use in both forward and inverse problems. First-surface Fresnel reflection, diffuse partial polarization, and ideal depolarization are popular terms used in closed-form pBRDF representations. The relative contributions of these terms are highly dependent on material, albedo/wavelength, and scattering geometry. Complicating matters further, current pBRDF representations incoherently combine Mueller matrices (MM) for Fresnel and polarized diffuse terms which couples into depolarization. In this work, a pBRDF representation is introduced where first-surface Fresnel reflection and diffuse polarization are coherently combined using Jones calculus to avoid affecting depolarization. The first-surface and diffuse reflection terms are combined using an analytic function which takes as input the scattering geometry as well as geometry-independent material parameters. Agreement with wide-field-of-view polarimetric measurements is demonstrated using the new pBRDF which has only six physically meaningful parameters: the scalar-valued depolarization parameter and average reflectance which are geometry-dependent and four geometry-independent material constants. In general, depolarization is described by nine parameters but a triply-degenerate (TD) model simplifies depolarization to a single parameter. To test this pBRDF representation, the material constants for a red 3D printed sphere are assumed and the geometry-dependent depolarization parameter is estimated from linear Stokes images. The geometry-averaged error of the depolarization parameter is 4.2% at 662 nm (high albedo) and 11.7% at 451 nm (low albedo). The error is inversely proportional to albedo and depolarization, so the TD-MM model is considered appropriate for depolarization-dominant materials. The robustness of the pBRDF representation is also demonstrated by comparing measured and extrapolated Mueller images of a Stanford bunny of the same red 3D printing material. The comparison is performed by using Mueller calculus to simulate polarimetric measurements based on the measured and extrapolated data.

摘要

在常见室内环境中发生的光与物质相互作用具有很强的去极化特性,但相对较小的偏振属性可能包含有用信息。此信息用于诸如基于物理的渲染和偏振形状恢复等应用中。室内材料的查找表偏振双向反射分布函数(pBRDF)是可用的,但封闭形式的表示因其在正向和反向问题中易于使用而具有优势。第一表面菲涅尔反射、漫反射部分偏振和理想去极化是封闭形式pBRDF表示中常用的术语。这些项的相对贡献高度依赖于材料、反照率/波长和散射几何形状。更复杂的是,当前的pBRDF表示将用于菲涅尔和偏振漫射项的穆勒矩阵(MM)非相干地组合在一起,这会导致去极化。在这项工作中,引入了一种pBRDF表示,其中第一表面菲涅尔反射和漫反射偏振使用琼斯算法相干地组合,以避免影响去极化。第一表面和漫反射项使用一个解析函数进行组合,该函数将散射几何形状以及与几何形状无关的材料参数作为输入。使用仅具有六个物理意义参数的新pBRDF证明了与宽视场偏振测量的一致性:与几何形状相关的标量值去极化参数和平均反射率以及四个与几何形状无关的材料常数。一般来说,去极化由九个参数描述,但三重简并(TD)模型将去极化简化为一个参数。为了测试这种pBRDF表示,假设了一个红色3D打印球体的材料常数,并从线性斯托克斯图像估计与几何形状相关的去极化参数。在662nm(高反照率)下,去极化参数的几何平均误差为4.2%,在451nm(低反照率)下为11.7%。误差与反照率和去极化成反比,因此TD-MM模型被认为适用于以去极化为主导的材料。通过比较相同红色3D打印材料的斯坦福兔子的测量和外推穆勒图像,也证明了pBRDF表示的稳健性。通过使用穆勒算法根据测量和外推数据模拟偏振测量来进行比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验