Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
Charles Perkins Centre, The University of Sydney, Sydney, Australia.
Curr Protoc. 2024 Mar;4(3):e985. doi: 10.1002/cpz1.985.
Microglia are the innate myeloid cells of the central nervous system (CNS) parenchyma, functionally implicated in almost every defined neuroinflammatory and neurodegenerative disorder. Current understanding of disease pathogenesis for many neuropathologies is limited and/or lacks reliable diagnostic markers, vaccines, and treatments. With the increasing aging of society and rise in neurogenerative diseases, improving our understanding of their pathogenesis is essential. Analysis of microglia from murine disease models provides an investigative tool to unravel disease processes. In many neuropathologies, bone-marrow-derived monocytes are recruited to the CNS, adopting a phenotype similar to that of microglia. This significantly confounds the accurate identification of cell-type-specific functions and downstream therapeutic targeting. The increased capacity to analyze more phenotypic markers using spectral-cytometry-based technologies allows improved separation of microglia from monocyte-derived cells. Full-spectrum profiling enables enhanced marker resolution, time-efficient analysis of >40 fluorescence parameters, and extraction of cellular autofluorescence parameters. Coupling this system with additional cytometric technologies, including cell sorting and high-parameter imaging, can improve the understanding of microglial phenotypes in disease. To this end, we provide detailed, step-by-step protocols for the analysis of murine brain tissue by high-parameter ex vivo cytometric analysis using the Aurora spectral cytometer (Cytek), including best practices for unmixing and autofluorescence extraction, cell sorting for single-cell RNA analysis, and imaging mass cytometry. Together, this provides a toolkit for researchers to comprehensively investigate microglial disease processes at protein, RNA, and spatial levels for the identification of therapeutic targets in neuropathology. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Processing the mouse brain into a single-cell suspension for microglia isolation Basic Protocol 2: Staining single-cell mouse brain suspensions for microglial phenotyping by spectral cytometry Basic Protocol 3: Flow cytometric sorting of mouse microglia for ex vivo analysis Basic Protocol 4: Processing the mouse brain for imaging mass cytometry for spatial microglia analysis.
小胶质细胞是中枢神经系统(CNS)实质中的固有髓样细胞,在几乎所有已定义的神经炎症和神经退行性疾病中都具有功能相关性。目前,许多神经病理学的发病机制理解有限和/或缺乏可靠的诊断标志物、疫苗和治疗方法。随着社会老龄化和神经退行性疾病的增加,提高我们对其发病机制的理解至关重要。从小鼠疾病模型中小胶质细胞的分析为揭示疾病过程提供了一种研究工具。在许多神经病理学中,骨髓源性单核细胞被募集到中枢神经系统,表现出与小胶质细胞相似的表型。这极大地混淆了对细胞类型特异性功能和下游治疗靶点的准确识别。使用基于光谱流式细胞术的技术分析更多表型标志物的能力增加,允许从小胶质细胞和单核细胞衍生细胞中更好地分离。全谱分析可提高标记物分辨率、高效分析>40 个荧光参数,并提取细胞自体荧光参数。将该系统与其他流式细胞术技术(包括细胞分选和高参数成像)相结合,可以改善对疾病中小胶质细胞表型的理解。为此,我们提供了详细的分步协议,用于使用 Aurora 光谱细胞仪(Cytek)进行离体高参数细胞分析,以分析小鼠脑组织,包括解混和自体荧光提取的最佳实践、用于单细胞 RNA 分析的细胞分选,以及成像质谱细胞术。总之,这为研究人员提供了一个工具包,用于在蛋白质、RNA 和空间水平上全面研究小胶质细胞疾病过程,以确定神经病理学中的治疗靶点。 © 2024 作者。Wiley Periodicals LLC 出版的《当代协议》。基础方案 1:将小鼠大脑加工成单细胞悬浮液以分离小胶质细胞基础方案 2:用光谱流式细胞术对单细胞小鼠脑悬浮液进行小胶质细胞表型染色基础方案 3:用流式细胞术对小鼠小胶质细胞进行分选,用于离体分析基础方案 4:处理小鼠大脑进行成像质谱细胞术用于空间小胶质细胞分析。