Xing Yunzhao, Zhong Sheng, Aronson Samuel L, Rausa Francisco M, Webster Dan E, Crouthamel Michelle H, Wang Li
AbbVie, North Chicago, IL, USA.
Digit Biomark. 2024 Mar 4;8(1):13-21. doi: 10.1159/000536499. eCollection 2024 Jan-Dec.
Image-based machine learning holds great promise for facilitating clinical care; however, the datasets often used for model training differ from the interventional clinical trial-based findings frequently used to inform treatment guidelines. Here, we draw on longitudinal imaging of psoriasis patients undergoing treatment in the Ultima 2 clinical trial (NCT02684357), including 2,700 body images with psoriasis area severity index (PASI) annotations by uniformly trained dermatologists.
An image-processing workflow integrating clinical photos of multiple body regions into one model pipeline was developed, which we refer to as the "One-Step PASI" framework due to its simultaneous body detection, lesion detection, and lesion severity classification. Group-stratified cross-validation was performed with 145 deep convolutional neural network models combined in an ensemble learning architecture.
The highest-performing model demonstrated a mean absolute error of 3.3, Lin's concordance correlation coefficient of 0.86, and Pearson correlation coefficient of 0.90 across a wide range of PASI scores comprising disease classifications of clear skin, mild, and moderate-to-severe disease. Within-person, time-series analysis of model performance demonstrated that PASI predictions closely tracked the trajectory of physician scores from severe to clear skin without systematically over- or underestimating PASI scores or percent changes from baseline.
This study demonstrates the potential of image processing and deep learning to translate otherwise inaccessible clinical trial data into accurate, extensible machine learning models to assess therapeutic efficacy.
基于图像的机器学习在促进临床护理方面具有巨大潜力;然而,常用于模型训练的数据集与常用于指导治疗指南的基于介入性临床试验的结果有所不同。在此,我们利用Ultima 2临床试验(NCT02684357)中接受治疗的银屑病患者的纵向成像,其中包括由训练一致的皮肤科医生标注银屑病面积和严重程度指数(PASI)的2700张身体图像。
开发了一种将多个身体区域的临床照片整合到一个模型管道中的图像处理工作流程,由于其能够同时进行身体检测、病变检测和病变严重程度分类,我们将其称为“一步PASI”框架。采用组分层交叉验证,将145个深度卷积神经网络模型组合成一个集成学习架构。
性能最佳的模型在包括皮肤清除、轻度和中度至重度疾病分类的广泛PASI评分范围内,平均绝对误差为3.3,林氏一致性相关系数为0.86,皮尔逊相关系数为0.90。在个体内部,模型性能的时间序列分析表明,PASI预测紧密跟踪医生评分从严重到皮肤清除的轨迹,而不会系统性地高估或低估PASI评分或与基线相比的百分比变化。
本研究证明了图像处理和深度学习将原本无法获取的临床试验数据转化为准确、可扩展的机器学习模型以评估治疗效果的潜力。