Department of Neurology, University Hospital Würzburg, 97080, Germany.
Institute for Medical Genetics and Applied Genomics, University of Tübingen, 72076, Germany; Core Facility Transgenic Animals, University Hospital of Tübingen, 72076, Germany; Max Planck Institute for Biological Cybernetics, Tübingen, 72076, Germany.
Neurobiol Dis. 2024 May;194:106462. doi: 10.1016/j.nbd.2024.106462. Epub 2024 Mar 3.
DYT-TOR1A (DYT1) dystonia, characterized by reduced penetrance and suspected environmental triggers, is explored using a "second hit" DYT-TOR1A rat model. We aim to investigate the biological mechanisms driving the conversion into a dystonic phenotype, focusing on the striatum's role in dystonia pathophysiology. Sciatic nerve crush injury was induced in ∆ETorA rats, lacking spontaneous motor abnormalities, and wild-type (wt) rats. Twelve weeks post-injury, unbiased RNA-sequencing was performed on the striatum to identify differentially expressed genes (DEGs) and pathways. Fenofibrate, a PPARα agonist, was introduced to assess its effects on gene expression. F-FDG autoradiography explored metabolic alterations in brain networks. Low transcriptomic variability existed between naïve wt and ∆ETorA rats (17 DEGs). Sciatic nerve injury significantly impacted ∆ETorA rats (1009 DEGs) compared to wt rats (216 DEGs). Pathway analyses revealed disruptions in energy metabolism, specifically in fatty acid β-oxidation and glucose metabolism. Fenofibrate induced gene expression changes in wt rats but failed in ∆ETorA rats. Fenofibrate increased dystonia-like movements in wt rats but reduced them in ∆ETorA rats. F-FDG autoradiography indicated modified glucose metabolism in motor and somatosensory cortices and striatum in both ∆ETorA and wt rats post-injury. Our findings highlight perturbed energy metabolism pathways in DYT-TOR1A dystonia, emphasizing compromised PPARα agonist efficacy in the striatum. Furthermore, we identify impaired glucose metabolism in the brain network, suggesting a potential shift in energy substrate utilization in dystonic DYT-TOR1A rats. These results contribute to understanding the pathophysiology and potential therapeutic targets for DYT-TOR1A dystonia.
DYT-TOR1A(DYT1)型肌张力障碍的特征为外显率低,疑似存在环境触发因素,本研究使用“二次打击”DYT-TOR1A 大鼠模型进行探索。我们旨在研究导致向肌张力障碍表型转化的生物学机制,重点关注纹状体在肌张力障碍病理生理学中的作用。在缺乏自发性运动异常的∆ETorA 大鼠和野生型(wt)大鼠中诱导坐骨神经挤压伤。损伤后 12 周,对纹状体进行无偏 RNA 测序,以鉴定差异表达基因(DEGs)和途径。PPARα 激动剂非诺贝特(fenofibrate)被引入以评估其对基因表达的影响。F-FDG 放射性自显影术探索脑网络中的代谢变化。未受伤的 wt 和 ∆ETorA 大鼠之间的转录组变异性较低(17 个 DEGs)。与 wt 大鼠(216 个 DEGs)相比,坐骨神经损伤对∆ETorA 大鼠的影响显著(1009 个 DEGs)。通路分析显示,能量代谢中断,特别是脂肪酸β氧化和葡萄糖代谢。非诺贝特在 wt 大鼠中诱导基因表达变化,但在∆ETorA 大鼠中失败。非诺贝特增加 wt 大鼠的肌张力障碍样运动,但减少∆ETorA 大鼠的运动。F-FDG 放射性自显影术表明,损伤后,∆ETorA 和 wt 大鼠的运动和体感皮质以及纹状体的葡萄糖代谢发生改变。我们的研究结果强调了 DYT-TOR1A 肌张力障碍中能量代谢途径的紊乱,突出了纹状体中 PPARα 激动剂疗效受损。此外,我们还发现脑网络中的葡萄糖代谢受损,这表明在肌张力障碍的 DYT-TOR1A 大鼠中,可能存在能量底物利用的潜在转变。这些结果有助于理解 DYT-TOR1A 肌张力障碍的病理生理学和潜在治疗靶点。