Department of Neurology, University Hospital of Würzburg, 97080, Germany.
Institute for Medical Genetics and Applied Genomics, University of Tübingen, 72076, Germany; Centre for Rare Diseases, University of Tübingen, 72076, Germany.
Neurobiol Dis. 2021 Jul;154:105337. doi: 10.1016/j.nbd.2021.105337. Epub 2021 Mar 19.
TOR1A is the most common inherited form of dystonia with still unclear pathophysiology and reduced penetrance of 30-40%. ∆ETorA rats mimic the TOR1A disease by expression of the human TOR1A mutation without presenting a dystonic phenotype. We aimed to induce dystonia-like symptoms in male ∆ETorA rats by peripheral nerve injury and to identify central mechanism of dystonia development. Dystonia-like movements (DLM) were assessed using the tail suspension test and implementing a pipeline of deep learning applications. Neuron numbers of striatal parvalbumin, nNOS, calretinin, ChAT interneurons and Nissl cells were estimated by unbiased stereology. Striatal dopaminergic metabolism was analyzed via in vivo microdialysis, qPCR and western blot. Local field potentials (LFP) were recorded from the central motor network. Deep brain stimulation (DBS) of the entopeduncular nucleus (EP) was performed. Nerve-injured ∆ETorA rats developed long-lasting DLM over 12 weeks. No changes in striatal structure were observed. Dystonic-like ∆ETorA rats presented a higher striatal dopaminergic turnover and stimulus-induced elevation of dopamine efflux compared to the control groups. Higher LFP theta power in the EP of dystonic-like ∆ETorA compared to wt rats was recorded. Chronic EP-DBS over 3 weeks led to improvement of DLM. Our data emphasizes the role of environmental factors in TOR1A symptomatogenesis. LFP analyses indicate that the pathologically enhanced theta power is a physiomarker of DLM. This TOR1A model replicates key features of the human TOR1A pathology on multiple biological levels and is therefore suited for further analysis of dystonia pathomechanism.
TOR1A 是最常见的遗传性肌张力障碍形式,其病理生理学仍不清楚,外显率为 30-40%。∆ETorA 大鼠通过表达人类 TOR1A 突变而不表现出肌张力障碍表型来模拟 TOR1A 疾病。我们旨在通过周围神经损伤在雄性 ∆ETorA 大鼠中诱导类似肌张力障碍的症状,并确定肌张力障碍发展的中枢机制。使用尾部悬挂测试评估类似肌张力障碍的运动(DLM),并实施深度学习应用程序的流水线。通过无偏体视学估计纹状体中的中间神经元数量,包括颗粒蛋白 Parvalbumin(PV)、神经元型一氧化氮合酶(nNOS)、钙结合蛋白 Calretinin(CR)、胆碱能乙酰转移酶(ChAT)和尼氏染色细胞。通过体内微透析、qPCR 和 Western blot 分析纹状体多巴胺代谢。记录来自中央运动网络的局部场电位(LFP)。进行苍白球内神经刺激(DBS)。受伤的 ∆ETorA 大鼠在 12 周内出现持久的 DLM。未观察到纹状体结构的变化。与对照组相比,类似肌张力障碍的 ∆ETorA 大鼠表现出更高的纹状体多巴胺周转率和刺激诱导的多巴胺外排增加。与 wt 大鼠相比,类似肌张力障碍的 ∆ETorA 大鼠 EP 中的 LFP θ 功率更高。在 3 周的慢性 EP-DBS 后,DLM 得到改善。我们的数据强调了环境因素在 TOR1A 症状发生中的作用。LFP 分析表明,病理性增强的θ功率是 DLM 的生理标志物。该 TOR1A 模型在多个生物学水平上复制了人类 TOR1A 病理学的关键特征,因此适合进一步分析肌张力障碍的发病机制。