Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Nat Commun. 2024 Mar 5;15(1):2011. doi: 10.1038/s41467-024-46241-8.
Translation elongation is essential for maintaining cellular proteostasis, and alterations in the translational landscape are associated with a range of diseases. Ribosome profiling allows detailed measurements of translation at the genome scale. However, it remains unclear how to disentangle biological variations from technical artifacts in these data and identify sequence determinants of translation dysregulation. Here we present Riboformer, a deep learning-based framework for modeling context-dependent changes in translation dynamics. Riboformer leverages the transformer architecture to accurately predict ribosome densities at codon resolution. When trained on an unbiased dataset, Riboformer corrects experimental artifacts in previously unseen datasets, which reveals subtle differences in synonymous codon translation and uncovers a bottleneck in translation elongation. Further, we show that Riboformer can be combined with in silico mutagenesis to identify sequence motifs that contribute to ribosome stalling across various biological contexts, including aging and viral infection. Our tool offers a context-aware and interpretable approach for standardizing ribosome profiling datasets and elucidating the regulatory basis of translation kinetics.
翻译延伸对于维持细胞蛋白质稳态至关重要,而翻译景观的改变与一系列疾病有关。核糖体谱分析允许在全基因组范围内对翻译进行详细测量。然而,目前尚不清楚如何从这些数据中的技术伪影中区分生物学变化,并确定翻译失调的序列决定因素。在这里,我们提出了 Riboformer,这是一种基于深度学习的框架,用于模拟翻译动力学的上下文相关变化。Riboformer 利用转换器架构来准确预测密码子分辨率的核糖体密度。在一个无偏数据集上进行训练时,Riboformer 可以纠正以前未见过的数据集中的实验伪影,从而揭示同义密码子翻译的细微差异,并发现翻译延伸中的瓶颈。此外,我们表明 Riboformer 可以与计算机诱变相结合,以识别在各种生物背景下导致核糖体停滞的序列基序,包括衰老和病毒感染。我们的工具提供了一种上下文感知和可解释的方法,用于标准化核糖体谱分析数据集,并阐明翻译动力学的调节基础。