Suppr超能文献

预测哺乳动物细胞中信使核糖核酸的翻译效率。

Predicting the translation efficiency of messenger RNA in mammalian cells.

作者信息

Zheng Dinghai, Persyn Logan, Wang Jun, Liu Yue, Montoya Fernando Ulloa, Cenik Can, Agarwal Vikram

机构信息

mRNA Center of Excellence, Sanofi, Waltham, MA 02451, USA.

Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.

出版信息

bioRxiv. 2025 Jan 18:2024.08.11.607362. doi: 10.1101/2024.08.11.607362.

Abstract

The degree to which translational control is specified by mRNA sequence is poorly understood in mammalian cells. Here, we constructed and leveraged a compendium of 3,819 ribosomal profiling datasets, distilling them into a transcriptome-wide atlas of translation efficiency (TE) measurements encompassing >140 human and mouse cell types. We subsequently developed RiboNN, a multitask deep convolutional neural network, and classic machine learning models to predict TEs in hundreds of cell types from sequence-encoded mRNA features, achieving state-of-the-art performance (r=0.79 in human and r=0.78 in mouse for mean TE across cell types). While the majority of earlier models solely considered 5' UTR sequence, RiboNN integrates contributions from the full-length mRNA sequence, learning that the 5' UTR, CDS, and 3' UTR respectively possess ~67%, 31%, and 2% per-nucleotide information density in the specification of mammalian TEs. Interpretation of RiboNN revealed that the spatial positioning of low-level di- and tri-nucleotide features (, including codons) largely explain model performance, capturing mechanistic principles such as how ribosomal processivity and tRNA abundance control translational output. RiboNN is predictive of the translational behavior of base-modified therapeutic RNA, and can explain evolutionary selection pressures in human 5' UTRs. Finally, it detects a common language governing mRNA regulatory control and highlights the interconnectedness of mRNA translation, stability, and localization in mammalian organisms.

摘要

在哺乳动物细胞中,翻译控制在多大程度上由mRNA序列决定,目前还知之甚少。在这里,我们构建并利用了一个包含3819个核糖体图谱数据集的汇编,将它们提炼成一个全转录组范围的翻译效率(TE)测量图谱,涵盖了超过140种人类和小鼠细胞类型。随后,我们开发了RiboNN,这是一种多任务深度卷积神经网络和经典机器学习模型,用于从序列编码的mRNA特征预测数百种细胞类型中的TE,达到了目前的最佳性能(跨细胞类型的平均TE在人类中r=0.79,在小鼠中r=0.78)。虽然大多数早期模型仅考虑5'UTR序列,但RiboNN整合了全长mRNA序列的贡献,了解到在哺乳动物TE的确定中,5'UTR、CDS和3'UTR分别具有约67%、31%和2%的每核苷酸信息密度。对RiboNN的解释表明,低水平二核苷酸和三核苷酸特征(包括密码子)的空间定位在很大程度上解释了模型性能,捕捉到了诸如核糖体持续合成能力和tRNA丰度如何控制翻译输出等机制原理。RiboNN能够预测碱基修饰的治疗性RNA的翻译行为,并能解释人类5'UTR中的进化选择压力。最后,它检测到一种控制mRNA调控的通用语言,并突出了哺乳动物生物中mRNA翻译、稳定性和定位的相互联系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a23e/11781400/8f78f893fad4/nihpp-2024.08.11.607362v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验