Khan A Q, Maqbool A, Alharbi Turki D
Department of Mathematics, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan.
Department of Mathematics, Al-Leith University College, Umm Al-Qura University, Mecca, Saudi Arabia.
Chaos. 2024 Mar 1;34(3). doi: 10.1063/5.0165828.
In this paper, we explore the local dynamics, chaos, and bifurcations of a discrete Rosenzweig-Macarthur prey-predator model. More specifically, we explore local dynamical characteristics at equilibrium solutions of the discrete model. The existence of bifurcations at equilibrium solutions is also studied, and that at semitrivial and trivial equilibrium solutions, the model does not undergo flip bifurcation, but at positive equilibrium solutions, it undergoes flip and Neimark-Sacker bifurcations when parameters go through certain curves. Fold bifurcation does not exist at positive equilibrium, and we have studied these bifurcations by the center manifold theorem and bifurcation theory. We also studied chaos by the feedback control method. The theoretical results are confirmed numerically.
在本文中,我们探讨了一个离散的罗森茨韦格 - 麦克阿瑟捕食 - 食饵模型的局部动力学、混沌及分岔情况。更具体地说,我们研究了该离散模型平衡解处的局部动力学特征。还研究了平衡解处的分岔情况,结果表明在半平凡和平凡平衡解处,模型不会经历翻转分岔,但在正平衡解处,当参数经过某些曲线时,模型会经历翻转分岔和奈马克 - 萨克分岔。正平衡处不存在折叠分岔,我们通过中心流形定理和分岔理论对这些分岔进行了研究。我们还通过反馈控制方法研究了混沌现象。理论结果通过数值计算得到了证实。