Suppr超能文献

离散生态发育系统的分岔与混沌分析

Bifurcation and chaos analysis for a discrete ecological developmental systems.

作者信息

Jiang Xiao-Wei, Chen Chaoyang, Zhang Xian-He, Chi Ming, Yan Huaicheng

机构信息

School of Automation, China University of Geosciences, Wuhan, 430074 People's Republic of China.

Hubei Key Laboratory of Advanced Control and Intelligent Automation of Complex Systems, Wuhan, 430074 People's Republic of China.

出版信息

Nonlinear Dyn. 2021;104(4):4671-4680. doi: 10.1007/s11071-021-06474-4. Epub 2021 Apr 26.

Abstract

This work concentrates on the dynamic analysis including bifurcation and chaos of a discrete ecological developmental systems. Specifically, it is a prey-predator-scavenger (PPS) system, which is derived by Euler discretization method. By choosing the step size as a bifurcation parameter, we determine the set consists of all system's parameters, in which the system can undergo flip bifurcation (FB) and Neimark-Sacker bifurcation (NSB). The theoretical results are verified by some numerical simulations. It is shown that the discrete systems exhibit more interesting behaviors, including the chaotic sets, quasi-periodic orbits, and the cascade of period-doubling bifurcation in orbits of periods 2, 4, 8, 16. Finally, corresponding to the two bifurcation behaviors discussed, the maximum Lyapunov exponent is numerically calculated, which further verifies the rich dynamic characteristics of the discrete system.

摘要

这项工作专注于离散生态发展系统的动态分析,包括分岔和混沌。具体而言,它是一个食饵-捕食者-食腐动物(PPS)系统,该系统由欧拉离散化方法推导得出。通过选择步长作为分岔参数,我们确定了由系统所有参数组成的集合,在这个集合中系统会经历翻转分岔(FB)和涅马克-萨克分岔(NSB)。理论结果通过一些数值模拟得到验证。结果表明,离散系统呈现出更有趣的行为,包括混沌集、准周期轨道以及周期为2、4、8、16的轨道中的倍周期分岔级联。最后,对应于所讨论的两种分岔行为,数值计算了最大李雅普诺夫指数,这进一步验证了离散系统丰富的动态特性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验