Kocybik Michael, Bauer Maris, Friederich Fabian
Department of Materials Characterization and Testing, Fraunhofer Institute for Industrial Mathematics ITWM, 67663, Kaiserslautern, Germany.
Department of Physics and Research Center OPTIMAS, RPTU Kaiserslautern-Landau, 67663, Kaiserslautern, Germany.
Sci Rep. 2024 Mar 6;14(1):5534. doi: 10.1038/s41598-024-55661-x.
We present observations of parasitic frequency components in the emission spectrum of typical photomixer sources for continuous wave (CW) terahertz generation. Broadband tunable photomixer systems are often used in combination with direct power detectors, e.g., for source and/or detector characterization. Here, spectral components besides the intended terahertz emission at the difference frequency of the two excitation lasers can significantly distort the measurement results. In this work, the appearance of parasitic mixing signals is observed in broadband measurements with a broadband antenna-coupled field-effect transistor as terahertz detector (TeraFET). The measurements reveal weaker spectral absorption features than expected and also a signal plateau towards higher frequencies, both strongly indicating a background in the detection signals. The photomixer emission is investigated in detail with a terahertz Fourier-transform infrared spectrometer (FTIR). We relate the observed parasitic frequency components with good quantitative agreement with the mode spectra of the semiconductor lasers. We also present one possible approach to overcome some of the issues, and we emphasize the importance of our findings to avoid distorted measurement results. To our knowledge, the essential aspect of parasitic mixing has so far been largely ignored in the literature where terahertz CW photomixer emitters are widely used for spectrally resolved measurements.
我们展示了用于连续波(CW)太赫兹产生的典型光混频器源发射光谱中寄生频率分量的观测结果。宽带可调谐光混频器系统通常与直接功率探测器结合使用,例如用于源和/或探测器的特性表征。在这里,除了在两个激发激光器的差频处预期的太赫兹发射之外的光谱分量,可能会严重扭曲测量结果。在这项工作中,在使用宽带天线耦合场效应晶体管作为太赫兹探测器(TeraFET)的宽带测量中,观察到了寄生混频信号的出现。测量结果显示出比预期更弱的光谱吸收特征,并且在更高频率处还有一个信号平台,这两者都强烈表明检测信号中存在背景。使用太赫兹傅里叶变换红外光谱仪(FTIR)对光混频器发射进行了详细研究。我们将观察到的寄生频率分量与半导体激光器的模式光谱进行了很好的定量比较。我们还提出了一种可能的方法来克服其中一些问题,并强调我们的发现对于避免测量结果失真的重要性。据我们所知,在太赫兹连续波光混频器发射器被广泛用于光谱分辨测量的文献中,寄生混频的重要方面迄今在很大程度上被忽视了。