Suppr超能文献

应用能量心电图波形检测 2 型糖尿病患者亚临床左心室功能障碍。

Use of the energy waveform electrocardiogram to detect subclinical left ventricular dysfunction in patients with type 2 diabetes mellitus.

机构信息

Imaging Research Laboratory, Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC, 3004, Australia.

Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia.

出版信息

Cardiovasc Diabetol. 2024 Mar 6;23(1):91. doi: 10.1186/s12933-024-02141-1.

Abstract

BACKGROUND

Recent guidelines propose N-terminal pro-B-type natriuretic peptide (NT-proBNP) for recognition of asymptomatic left ventricular (LV) dysfunction (Stage B Heart Failure, SBHF) in type 2 diabetes mellitus (T2DM). Wavelet Transform based signal-processing transforms electrocardiogram (ECG) waveforms into an energy distribution waveform (ew)ECG, providing frequency and energy features that machine learning can use as additional inputs to improve the identification of SBHF. Accordingly, we sought whether machine learning model based on ewECG features was superior to NT-proBNP, as well as a conventional screening tool-the Atherosclerosis Risk in Communities (ARIC) HF risk score, in SBHF screening among patients with T2DM.

METHODS

Participants in two clinical trials of SBHF (defined as diastolic dysfunction [DD], reduced global longitudinal strain [GLS ≤ 18%] or LV hypertrophy [LVH]) in T2DM underwent 12-lead ECG with additional ewECG feature and echocardiography. Supervised machine learning was adopted to identify the optimal combination of ewECG extracted features for SBHF screening in 178 participants in one trial and tested in 97 participants in the other trial. The accuracy of the ewECG model in SBHF screening was compared with NT-proBNP and ARIC HF.

RESULTS

SBHF was identified in 128 (72%) participants in the training dataset (median 72 years, 41% female) and 64 (66%) in the validation dataset (median 70 years, 43% female). Fifteen ewECG features showed an area under the curve (AUC) of 0.81 (95% CI 0.787-0.794) in identifying SBHF, significantly better than both NT-proBNP (AUC 0.56, 95% CI 0.44-0.68, p < 0.001) and ARIC HF (AUC 0.67, 95%CI 0.56-0.79, p = 0.002). ewECG features were also led to robust models screening for DD (AUC 0.74, 95% CI 0.73-0.74), reduced GLS (AUC 0.76, 95% CI 0.73-0.74) and LVH (AUC 0.90, 95% CI 0.88-0.89).

CONCLUSIONS

Machine learning based modelling using additional ewECG extracted features are superior to NT-proBNP and ARIC HF in SBHF screening among patients with T2DM, providing an alternative HF screening strategy for asymptomatic patients and potentially act as a guidance tool to determine those who required echocardiogram to confirm diagnosis. Trial registration LEAVE-DM, ACTRN 12619001393145 and Vic-ELF, ACTRN 12617000116325.

摘要

背景

最近的指南建议使用 N 端脑利钠肽前体(NT-proBNP)来识别 2 型糖尿病(T2DM)中的无症状左心室(LV)功能障碍(心力衰竭 B 期,SBHF)。基于小波变换的信号处理将心电图(ECG)波形转换为能量分布波形(ewECG),提供频率和能量特征,机器学习可以将其用作额外的输入,以提高 SBHF 的识别能力。因此,我们研究了基于 ewECG 特征的机器学习模型是否优于 NT-proBNP 以及传统的筛查工具——社区动脉粥样硬化风险(ARIC)心力衰竭风险评分,用于筛查 T2DM 患者中的 SBHF。

方法

两项 SBHF 临床试验(定义为舒张功能障碍[DD]、整体纵向应变降低[GLS≤18%]或左心室肥厚[LVH])中的患者接受了 12 导联心电图和额外的 ewECG 特征检查,并进行了超声心动图检查。采用监督机器学习方法来识别一项试验中的 178 名参与者和另一项试验中的 97 名参与者中 ewECG 提取特征的最佳组合,用于 SBHF 筛查。比较 ewECG 模型在 SBHF 筛查中的准确性与 NT-proBNP 和 ARIC HF。

结果

在训练数据集(中位数 72 岁,41%女性)中,128 名(72%)参与者和验证数据集(中位数 70 岁,43%女性)中 64 名参与者确定了 SBHF。15 个 ewECG 特征的曲线下面积(AUC)为 0.81(95%CI 0.787-0.794),可识别 SBHF,明显优于 NT-proBNP(AUC 0.56,95%CI 0.44-0.68,p<0.001)和 ARIC HF(AUC 0.67,95%CI 0.56-0.79,p=0.002)。ewECG 特征还可用于稳健的模型筛查 DD(AUC 0.74,95%CI 0.73-0.74)、降低的 GLS(AUC 0.76,95%CI 0.73-0.74)和 LVH(AUC 0.90,95%CI 0.88-0.89)。

结论

基于机器学习的模型使用额外的 ewECG 提取特征,在 T2DM 患者的 SBHF 筛查中优于 NT-proBNP 和 ARIC HF,为无症状患者提供了另一种心力衰竭筛查策略,并可能作为确定需要超声心动图以确认诊断的患者的指导工具。

试验注册

LEAVE-DM,ACTRN 12619001393145 和 Vic-ELF,ACTRN 12617000116325。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b57d/10918872/45b1f1136de8/12933_2024_2141_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验