Zhou Yuanbo, Zhang Lifang, Zhu Zebin, Wang Mengfan, Li Najun, Qian Tao, Yan Chenglin, Lu Jianmei
Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China.
School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China.
Angew Chem Int Ed Engl. 2024 Apr 24;63(18):e202319029. doi: 10.1002/anie.202319029. Epub 2024 Mar 26.
Electrochemical reduction of nitrate to ammonia (NORR) is a promising and eco-friendly strategy for ammonia production. However, the sluggish kinetics of the eight-electron transfer process and poor mechanistic understanding strongly impedes its application. To unveil the internal laws, herein, a library of Pd-based bimetallene with various transition metal dopants (PdM (M=Fe, Co, Ni, Cu)) are screened to learn their structure-activity relationship towards NORR. The ultra-thin structure of metallene greatly facilitates the exposure of active sites, and the transition metals dopants break the electronic balance and upshift its d-band center, thus optimizing intermediates adsorption. The anisotropic electronic characteristics of these transition metals make the NORR activity in the order of PdCu>PdCo≈PdFe>PdNi>Pd, and a record-high NH yield rate of 295 mg h mg along with Faradaic efficiency of 90.9 % is achieved in neutral electrolyte on PdCu bimetallene. Detailed studies further reveal that the moderate N-species (*NO and *NO) adsorption ability, enhanced *NO activation, and reduced HER activity facilitate the NH production. We believe our results will give a systematic guidance to the future design of NORR catalysts.
将硝酸盐电化学还原为氨(NORR)是一种很有前景且环保的制氨策略。然而,八电子转移过程缓慢的动力学以及对其机理理解不足严重阻碍了它的应用。为了揭示其中的内在规律,在此筛选了一系列含有不同过渡金属掺杂剂的钯基金属烯(PdM,M = Fe、Co、Ni、Cu),以研究它们对NORR的构效关系。金属烯的超薄结构极大地促进了活性位点的暴露,过渡金属掺杂剂打破了电子平衡并使其d带中心上移,从而优化了中间体的吸附。这些过渡金属的各向异性电子特性使得NORR活性顺序为PdCu > PdCo≈PdFe > PdNi > Pd,并且在中性电解质中,PdCu双金属烯实现了创纪录的295 mg h mg的NH产率以及90.9%的法拉第效率。详细研究进一步表明,适度的氮物种(NO和NO)吸附能力、增强的*NO活化以及降低的析氢活性有利于NH的生成。我们相信我们的结果将为未来NORR催化剂的设计提供系统指导。