Xie Yaofeng, Li Yu, Yin Zhiping, Zhang Rui, Wang Weiyi, Stone Matthew B, Cao Huibo, Abernathy D L, Harriger Leland, Young David P, DiTusa J F, Dai Pengcheng
Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA.
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
Phys Rev B. 2020 Dec;102. doi: 10.1103/PhysRevB.102.214431.
We use neutron scattering to investigate spin excitations in , which has a -axis incommensurate helical structure of the two-dimensional (2D) in-plane ferromagnetic (FM) ordered layers for . By comparing the wave vector and energy dependent spin excitations in helical ordered and paramagnetic , we find that Ni doping, while increasing lattice disorder in , enhances quasi-2D FM spin fluctuations. However, our band structure calculations within the combined density functional theory and dynamic mean field theory (DFT+DMFT) failed to generate a correct incommensurate wave vector for the observed helical order from nested Fermi surfaces. Since transport measurements reveal increased in-plane and -axis electrical resistivity with increasing Ni doping and associated lattice disorder, we conclude that the helical magnetic order in may arise from a quantum order-by-disorder mechanism through the itinerant electron mediated Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions.
我们利用中子散射来研究[具体材料]中的自旋激发,该材料具有二维(2D)面内铁磁(FM)有序层的a轴非共线螺旋结构。通过比较螺旋有序态和顺磁态中波矢和能量依赖的自旋激发,我们发现Ni掺杂虽然增加了[具体材料]中的晶格无序,但增强了准二维FM自旋涨落。然而,我们在密度泛函理论和动态平均场理论相结合(DFT+DMFT)框架下的能带结构计算,未能从嵌套费米面为观测到的螺旋序生成正确的非共线波矢。由于输运测量表明,随着Ni掺杂和相关晶格无序的增加,面内和面外电阻率都升高,我们得出结论,[具体材料]中的螺旋磁序可能源于通过巡游电子介导的Ruderman-Kittel-Kasuya-Yosida(RKKY)相互作用的量子无序致序机制。