Tzamaras Haroula M, Wu Hang-Ling, Moore Jason Z, Miller Scarlett R
Pennsylvania State University Industrial Engineering.
Pennsylvania State University Mechanical Engineering.
Proc Hum Factors Ergon Soc Annu Meet. 2023 Sep;67(1):953-958. doi: 10.1177/21695067231192929. Epub 2023 Oct 25.
Eye-tracking is a valuable research method for understanding human cognition and is readily employed in human factors research, including human factors in healthcare. While wearable mobile eye trackers have become more readily available, there are no existing analysis methods for accurately and efficiently mapping dynamic gaze data on dynamic areas of interest (AOIs), which limits their utility in human factors research. The purpose of this paper was to outline a proposed framework for automating the analysis of dynamic areas of interest by integrating computer vision and machine learning (CVML). The framework is then tested using a use-case of a Central Venous Catheterization trainer with six dynamic AOIs. While the results of the validity trial indicate there is room for improvement in the CVML method proposed, the framework provides direction and guidance for human factors researchers using dynamic AOIs.
眼动追踪是理解人类认知的一种有价值的研究方法,并且在人因研究中很容易被采用,包括医疗保健中的人因研究。虽然可穿戴式移动眼动追踪器已变得更容易获得,但目前还没有能够将动态注视数据准确且高效地映射到动态感兴趣区域(AOI)的分析方法,这限制了它们在人因研究中的效用。本文的目的是概述一个通过整合计算机视觉和机器学习(CVML)来自动分析动态感兴趣区域的框架。然后使用具有六个动态AOI的中心静脉置管训练器的用例对该框架进行测试。虽然有效性试验的结果表明所提出的CVML方法仍有改进空间,但该框架为使用动态AOI的人因研究人员提供了方向和指导。