School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
Elife. 2024 Mar 7;13:e81884. doi: 10.7554/eLife.81884.
Synapse is the fundamental structure for neurons to transmit information between cells. The proper synapse formation is crucial for developing neural circuits and cognitive functions of the brain. The aberrant synapse formation has been proved to cause many neurological disorders, including autism spectrum disorders and intellectual disability. Synaptic cell adhesion molecules (CAMs) are thought to play a major role in achieving mechanistic cell-cell recognition and initiating synapse formation via trans-synaptic interactions. Due to the diversity of synapses in different brain areas, circuits and neurons, although many synaptic CAMs, such as Neurexins (NRXNs), Neuroligins (NLGNs), Synaptic cell adhesion molecules (SynCAMs), Leucine-rich-repeat transmembrane neuronal proteins (LRRTMs), and SLIT and NTRK-like protein (SLITRKs) have been identified as synaptogenic molecules, how these molecules determine specific synapse formation and whether other molecules driving synapse formation remain undiscovered are unclear. Here, to provide a tool for synapse labeling and synaptic CAMs screening by artificial synapse formation (ASF) assay, we generated synaptotagmin-1-tdTomato (tdTomato) transgenic mice by inserting the tdTomato-fused synaptotagmin-1 coding sequence into the genome of C57BL/6J mice. In the brain of tdTomato transgenic mice, the tdTomato-fused synaptotagmin-1 (SYT1-tdTomato) signals were widely observed in different areas and overlapped with synapsin-1, a widely-used synaptic marker. In the olfactory bulb, the SYT1-tdTomato signals are highly enriched in the glomerulus. In the cultured hippocampal neurons, the SYT1-tdTomato signals showed colocalization with several synaptic markers. Compared to the wild-type (WT) mouse neurons, cultured hippocampal neurons from tdTomato transgenic mice presented normal synaptic neurotransmission. In ASF assays, neurons from tdTomato transgenic mice could form synaptic connections with HEK293T cells expressing NLGN2, LRRTM2, and SLITRK2 without immunostaining. Therefore, our work suggested that the tdTomato transgenic mice with the ability to label synapses by tdTomato, and it will be a convenient tool for screening synaptogenic molecules.
突触是神经元在细胞间传递信息的基本结构。适当的突触形成对于发育中的神经回路和大脑的认知功能至关重要。异常的突触形成已被证明会导致许多神经疾病,包括自闭症谱系障碍和智力障碍。突触细胞粘附分子(CAMs)被认为在实现机械细胞-细胞识别和通过突触间相互作用启动突触形成方面发挥主要作用。由于不同脑区、回路和神经元中的突触多样性,尽管已经确定了许多突触 CAMs,如神经连接蛋白(NRXNs)、神经连接蛋白配体(NLGNs)、突触细胞粘附分子(SynCAMs)、富含亮氨酸的重复跨膜神经元蛋白(LRRTMs)和 SLIT 和 NTRK 样蛋白(SLITRKs)作为促突触形成分子,但这些分子如何决定特定的突触形成,以及是否有其他分子驱动突触形成仍未被发现。在这里,为了通过人工突触形成(ASF)测定法提供用于突触标记和突触 CAMs 筛选的工具,我们通过将 tdTomato 融合的突触小泡蛋白 1(SYT1-tdTomato)编码序列插入 C57BL/6J 小鼠的基因组中,生成了突触小泡蛋白 1-tdTomato(tdTomato)转基因小鼠。在 tdTomato 转基因小鼠的大脑中,广泛观察到 tdTomato 融合的突触小泡蛋白 1(SYT1-tdTomato)信号与广泛使用的突触标记物突触素 1(synapsin-1)重叠。在嗅球中,SYT1-tdTomato 信号高度富集在小球中。在培养的海马神经元中,SYT1-tdTomato 信号与几种突触标记物共定位。与野生型(WT)小鼠神经元相比,来自 tdTomato 转基因小鼠的培养海马神经元表现出正常的突触神经传递。在 ASF 测定中,来自 tdTomato 转基因小鼠的神经元可以与表达 NLGN2、LRRTM2 和 SLITRK2 的 HEK293T 细胞形成突触连接,而无需免疫染色。因此,我们的工作表明,具有通过 tdTomato 标记突触能力的 tdTomato 转基因小鼠将成为筛选促突触形成分子的便捷工具。