Biomedical engineering department, University of Connecticut, Storrs, CT, 06269, USA.
Defibtech, LLC, Guilford, CT, 06437, USA.
Comput Biol Med. 2024 Apr;172:108180. doi: 10.1016/j.compbiomed.2024.108180. Epub 2024 Feb 28.
Delivery of continuous cardiopulmonary resuscitation (CPR) plays an important role in the out-of-hospital cardiac arrest (OHCA) survival rate. However, to prevent CPR artifacts being superimposed on ECG morphology data, currently available automated external defibrillators (AEDs) require pauses in CPR for accurate analysis heart rhythms. In this study, we propose a novel Convolutional Neural Network-based Encoder-Decoder (CNNED) structure with a shock advisory algorithm to improve the accuracy and reliability of shock versus non-shock decision-making without CPR pause in OHCA scenarios. Our approach employs a cascade of CNNEDs in conjunction with an AED shock advisory algorithm to process the ECG data for shock decisions. Initially, a CNNED trained on an equal number of shockable and non-shockable rhythms is used to filter the CPR-contaminated data. The resulting filtered signal is then fed into a second CNNED, which is trained on imbalanced data more tilted toward the specific rhythm being analyzed. A reliable shock versus non-shock decision is made when both classifiers from the cascade structure agree, while segments with conflicting classifications are labeled as indeterminate, indicating the need for additional segments to analyze. To evaluate our approach, we generated CPR-contaminated ECG data by combining clean ECG data with 52 CPR samples. We used clean ECG data from the CUDB, AFDB, SDDB, and VFDB databases, to which 52 CPR artifact cases were added, while a separate test set provided by the AED manufacturer Defibtech LLC was used for performance evaluation. The test set comprised 20,384 non-shockable CPR-contaminated segments from 392 subjects, as well as 3744 shockable CPR-contaminated samples from 41 subjects with coarse ventricular fibrillation (VF) and 31 subjects with rapid ventricular tachycardia (rapid VT). We observed improvements in rhythm analysis using our proposed cascading CNNED structure when compared to using a single CNNED structure. Specifically, the specificity of the proposed cascade of CNNED structure increased from 99.14% to 99.35% for normal sinus rhythm and from 96.45% to 97.22% for other non-shockable rhythms. Moreover, the sensitivity for shockable rhythm detection increased from 90.90% to 95.41% for ventricular fibrillation and from 82.26% to 87.66% for rapid ventricular tachycardia. These results meet the performance thresholds set by the American Heart Association and demonstrate the reliable and accurate analysis of heart rhythms during CPR using only ECG data without the need for CPR interruptions or a reference signal.
持续心肺复苏(CPR)的实施对于院外心脏骤停(OHCA)的存活率起着重要作用。然而,为了防止 CPR 伪影叠加到心电图形态数据上,目前可用的自动体外除颤器(AED)需要在 CPR 过程中暂停,以进行准确的心律分析。在这项研究中,我们提出了一种新的基于卷积神经网络的编码器-解码器(CNNED)结构,并结合了一个电击预警算法,以在 OHCA 场景中无需暂停 CPR 的情况下,提高电击与非电击决策的准确性和可靠性。我们的方法采用级联 CNNED 与 AED 电击预警算法相结合的方式,对 ECG 数据进行处理以进行电击决策。首先,使用经过同等数量的可电击和非可电击节律训练的 CNNED 来过滤 CPR 污染数据。然后将经过滤波的信号输入到第二个 CNNED,该 CNNED 是基于更偏向于正在分析的特定节律的不平衡数据进行训练的。当级联结构中的两个分类器达成一致时,就会做出可靠的电击与非电击决策,而具有冲突分类的片段则被标记为不确定,表明需要分析更多的片段。为了评估我们的方法,我们通过将干净的 ECG 数据与 52 个 CPR 样本相结合,生成了 CPR 污染的 ECG 数据。我们使用了来自 CUDB、AFDB、SDDB 和 VFDB 数据库的干净 ECG 数据,并向其中添加了 52 个 CPR 伪影案例,而 AED 制造商 Defibtech LLC 提供的单独测试集则用于性能评估。测试集包括来自 392 名受试者的 20384 个非可电击性 CPR 污染段,以及来自 41 名患有粗心室颤动(VF)和 31 名患有快速室性心动过速(rapid VT)受试者的 3744 个可电击性 CPR 污染样本。与使用单个 CNNED 结构相比,我们观察到使用所提出的级联 CNNED 结构进行节律分析时的性能有所提高。具体来说,对于正常窦性节律,所提出的级联 CNNED 结构的特异性从 99.14%提高到了 99.35%,对于其他非电击性节律,特异性从 96.45%提高到了 97.22%。此外,对于心室颤动,可电击性节律检测的敏感性从 90.90%提高到了 95.41%,对于快速室性心动过速,敏感性从 82.26%提高到了 87.66%。这些结果达到了美国心脏协会设定的性能阈值,并证明了在仅使用 ECG 数据的情况下,无需中断 CPR 或参考信号,即可对 CPR 期间的心律进行可靠和准确的分析。