Suppr超能文献

双p-n Z型异质结构增强了InS/MnO/BiOCl光催化剂将CO高效光还原为CO、CH和CH的性能。

Dual p-n Z-scheme heterostructure boosted superior photoreduction CO to CO, CH and CH in InS/MnO/BiOCl photocatalyst.

作者信息

Chen Qiuling, Wang Shun, Miao Baoji, Chen Qiuping

机构信息

School of Material Sciences & Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China; Henan International Joint Laboratory of Nano-Photoelectric Magnetic Material of Henan University of Technology.

School of Material Sciences & Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China.

出版信息

J Colloid Interface Sci. 2024 Jun;663:1005-1018. doi: 10.1016/j.jcis.2024.02.172. Epub 2024 Feb 24.

Abstract

The creation of a Z-scheme heterojunction is a sophisticated strategy to enhance photocatalytic efficiency. In our study, we synthesized an InS/MnO/BiOCl dual Z-scheme heterostructure by growing BiOCl nanoplates on the sheets of InS nanoflowers, situated on the surface of MnO nanowires. This synthesis involved a combination of hydrothermal and solution combustion methods. Experiments and density functional theory (DFT) calculations demonstrated that the InS/MnO/BiOCl composite exhibited notable photo reduction performance and photocatalytic stability. This was attributed to the pivotal roles of BiOCl and MnO in the composite, acting as auxiliaries to enhance the electronic structure and facilitate the adsorption/activation capacity of CO and HO. The yield rates of CO, CH, and CH over InS/MnO/BiOCl as the catalyst were 3.94, 5.5, and 3.64 times higher than those of pure InS, respectively. Photoelectrochemical analysis revealed that the dual Z-scheme heterostructure, with its oxygen vacancies and large surface area, enhanced CO absorption and active sites on the nanoflower/nanowire intersurfaces. Consequently, the dual Z-scheme charge transfer pathway provided efficient channels for boosting electron transfer and charge separation, resulting in high CH, CH, and CO yields of formed and exihibits an promising photoreduction rate of CO to CO (51.2 µmol/g.h), CH (42.4 µmol/g.h) and CH (63.2 µmol/g.h), respectively. DFT, in situ Diffuse reflectance infrared fourier transform spectroscopy, and temperature-programmed desorption tests were employed to verify the intermediates pathway. The study proposed a potential photocatalytic mechanism based on these findings.

摘要

构建Z型异质结是提高光催化效率的一种复杂策略。在我们的研究中,通过在MnO纳米线表面的InS纳米花片上生长BiOCl纳米板,合成了InS/MnO/BiOCl双Z型异质结构。这种合成涉及水热法和溶液燃烧法的结合。实验和密度泛函理论(DFT)计算表明,InS/MnO/BiOCl复合材料表现出显著的光还原性能和光催化稳定性。这归因于复合材料中BiOCl和MnO的关键作用,它们作为助剂增强了电子结构,并促进了CO和HO的吸附/活化能力。以InS/MnO/BiOCl为催化剂时,CO、CH和CH的产率分别比纯InS高3.94倍、5.5倍和3.64倍。光电化学分析表明,具有氧空位和大表面积的双Z型异质结构增强了纳米花/纳米线界面上的CO吸收和活性位点。因此,双Z型电荷转移途径为促进电子转移和电荷分离提供了有效通道,从而形成了高的CH、CH和CO产率,并分别展现出将CO光还原为CO(51.2 μmol/g·h)、CH(42.4 μmol/g·h)和CH(63.2 μmol/g·h)的有前景的光还原速率。采用DFT、原位漫反射红外傅里叶变换光谱和程序升温脱附测试来验证中间产物途径。该研究基于这些发现提出了一种潜在的光催化机理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验