Bhattarai Puskar, Thakuri Deepa Singh, Nie Yuzheng, Chand Ganesh B
Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA; University of Missouri, School of Medicine, Columbia, MO, USA.
Eur J Radiol. 2024 May;174:111403. doi: 10.1016/j.ejrad.2024.111403. Epub 2024 Mar 2.
Mild cognitive impairment (MCI)/Alzheimer's disease (AD) is associated with cognitive decline beyond normal aging and linked to the alterations of brain volume quantified by magnetic resonance imaging (MRI) and amyloid-beta (Aβ) quantified by positron emission tomography (PET). Yet, the complex relationships between these regional imaging measures and cognition in MCI/AD remain unclear. Explainable artificial intelligence (AI) may uncover such relationships.
We integrate the AI-based deep learning neural network and Shapley additive explanations (SHAP) approaches and introduce the Deep-SHAP method to investigate the multivariate relationships between regional imaging measures and cognition. After validating this approach on simulated data, we apply it to real experimental data from MCI/AD patients.
Deep-SHAP significantly predicted cognition using simulated regional features and identified the ground-truth simulated regions as the most significant multivariate predictors. When applied to experimental MRI data, Deep-SHAP revealed that the insula, lateral occipital, medial frontal, temporal pole, and occipital fusiform gyrus are the primary contributors to global cognitive decline in MCI/AD. Furthermore, when applied to experimental amyloid Pittsburgh compound B (PiB)-PET data, Deep-SHAP identified the key brain regions for global cognitive decline in MCI/AD as the inferior temporal, parahippocampal, inferior frontal, supratemporal, and lateral frontal gray matter.
Deep-SHAP method uncovered the multivariate relationships between regional brain features and cognition, offering insights into the most critical modality-specific brain regions involved in MCI/AD mechanisms.
轻度认知障碍(MCI)/阿尔茨海默病(AD)与超出正常衰老的认知衰退相关,且与通过磁共振成像(MRI)量化的脑容量改变以及通过正电子发射断层扫描(PET)量化的淀粉样β蛋白(Aβ)有关。然而,这些区域成像指标与MCI/AD认知之间的复杂关系仍不清楚。可解释人工智能(AI)可能揭示此类关系。
我们整合了基于AI的深度学习神经网络和夏普利值加法解释(SHAP)方法,并引入深度SHAP方法来研究区域成像指标与认知之间的多变量关系。在对模拟数据验证该方法后,我们将其应用于MCI/AD患者的真实实验数据。
深度SHAP使用模拟区域特征显著预测了认知,并将真实模拟区域确定为最重要的多变量预测因子。当应用于实验性MRI数据时,深度SHAP显示脑岛、枕外侧、额内侧、颞极和枕颞梭状回是MCI/AD中全球认知衰退的主要贡献区域。此外,当应用于实验性淀粉样匹兹堡化合物B(PiB)-PET数据时,深度SHAP将MCI/AD中全球认知衰退的关键脑区确定为颞下回、海马旁回、额下回、颞上回和额外侧灰质。
深度SHAP方法揭示了区域脑特征与认知之间的多变量关系,为深入了解参与MCI/AD机制的最关键的特定模态脑区提供了见解。