Suppr超能文献

基于可解释人工智能的深度SHAP,用于绘制区域神经影像生物标志物与认知之间的多变量关系。

Explainable AI-based Deep-SHAP for mapping the multivariate relationships between regional neuroimaging biomarkers and cognition.

作者信息

Bhattarai Puskar, Thakuri Deepa Singh, Nie Yuzheng, Chand Ganesh B

机构信息

Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.

Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA; University of Missouri, School of Medicine, Columbia, MO, USA.

出版信息

Eur J Radiol. 2024 May;174:111403. doi: 10.1016/j.ejrad.2024.111403. Epub 2024 Mar 2.

Abstract

BACKGROUND

Mild cognitive impairment (MCI)/Alzheimer's disease (AD) is associated with cognitive decline beyond normal aging and linked to the alterations of brain volume quantified by magnetic resonance imaging (MRI) and amyloid-beta (Aβ) quantified by positron emission tomography (PET). Yet, the complex relationships between these regional imaging measures and cognition in MCI/AD remain unclear. Explainable artificial intelligence (AI) may uncover such relationships.

METHOD

We integrate the AI-based deep learning neural network and Shapley additive explanations (SHAP) approaches and introduce the Deep-SHAP method to investigate the multivariate relationships between regional imaging measures and cognition. After validating this approach on simulated data, we apply it to real experimental data from MCI/AD patients.

RESULTS

Deep-SHAP significantly predicted cognition using simulated regional features and identified the ground-truth simulated regions as the most significant multivariate predictors. When applied to experimental MRI data, Deep-SHAP revealed that the insula, lateral occipital, medial frontal, temporal pole, and occipital fusiform gyrus are the primary contributors to global cognitive decline in MCI/AD. Furthermore, when applied to experimental amyloid Pittsburgh compound B (PiB)-PET data, Deep-SHAP identified the key brain regions for global cognitive decline in MCI/AD as the inferior temporal, parahippocampal, inferior frontal, supratemporal, and lateral frontal gray matter.

CONCLUSION

Deep-SHAP method uncovered the multivariate relationships between regional brain features and cognition, offering insights into the most critical modality-specific brain regions involved in MCI/AD mechanisms.

摘要

背景

轻度认知障碍(MCI)/阿尔茨海默病(AD)与超出正常衰老的认知衰退相关,且与通过磁共振成像(MRI)量化的脑容量改变以及通过正电子发射断层扫描(PET)量化的淀粉样β蛋白(Aβ)有关。然而,这些区域成像指标与MCI/AD认知之间的复杂关系仍不清楚。可解释人工智能(AI)可能揭示此类关系。

方法

我们整合了基于AI的深度学习神经网络和夏普利值加法解释(SHAP)方法,并引入深度SHAP方法来研究区域成像指标与认知之间的多变量关系。在对模拟数据验证该方法后,我们将其应用于MCI/AD患者的真实实验数据。

结果

深度SHAP使用模拟区域特征显著预测了认知,并将真实模拟区域确定为最重要的多变量预测因子。当应用于实验性MRI数据时,深度SHAP显示脑岛、枕外侧、额内侧、颞极和枕颞梭状回是MCI/AD中全球认知衰退的主要贡献区域。此外,当应用于实验性淀粉样匹兹堡化合物B(PiB)-PET数据时,深度SHAP将MCI/AD中全球认知衰退的关键脑区确定为颞下回、海马旁回、额下回、颞上回和额外侧灰质。

结论

深度SHAP方法揭示了区域脑特征与认知之间的多变量关系,为深入了解参与MCI/AD机制的最关键的特定模态脑区提供了见解。

相似文献

1
5
Predicting cognitive decline: Deep-learning reveals subtle brain changes in pre-MCI stage.
J Prev Alzheimers Dis. 2025 May;12(5):100079. doi: 10.1016/j.tjpad.2025.100079. Epub 2025 Feb 6.
7
Comparison of multiple tau-PET measures as biomarkers in aging and Alzheimer's disease.
Neuroimage. 2017 Aug 15;157:448-463. doi: 10.1016/j.neuroimage.2017.05.058. Epub 2017 Jun 3.
9
XGBoost-SHAP-based interpretable diagnostic framework for alzheimer's disease.
BMC Med Inform Decis Mak. 2023 Jul 25;23(1):137. doi: 10.1186/s12911-023-02238-9.

引用本文的文献

2
Explainable CNN-Radiomics Fusion and Ensemble Learning for Multimodal Lesion Classification in Dental Radiographs.
Diagnostics (Basel). 2025 Aug 9;15(16):1997. doi: 10.3390/diagnostics15161997.
3
An explainable AI approach for mapping multivariate regional brain age and clinical severity patterns in Alzheimer's disease.
Biol Methods Protoc. 2025 Aug 7;10(1):bpaf051. doi: 10.1093/biomethods/bpaf051. eCollection 2025.
6
Optimizing the power of AI for fracture detection: from blind spots to breakthroughs.
Skeletal Radiol. 2025 May 23. doi: 10.1007/s00256-025-04951-0.
7
c-Triadem: A constrained, explainable deep learning model to identify novel biomarkers in Alzheimer's disease.
PLoS One. 2025 Apr 14;20(4):e0320360. doi: 10.1371/journal.pone.0320360. eCollection 2025.
8
Scale-dependent brain age with higher-order statistics from structural magnetic resonance imaging.
bioRxiv. 2025 May 8:2025.03.24.644902. doi: 10.1101/2025.03.24.644902.

本文引用的文献

2
Explainable multi-task learning for multi-modality biological data analysis.
Nat Commun. 2023 May 3;14(1):2546. doi: 10.1038/s41467-023-37477-x.
3
Lecanemab in Early Alzheimer's Disease.
N Engl J Med. 2023 Jan 5;388(1):9-21. doi: 10.1056/NEJMoa2212948. Epub 2022 Nov 29.
4
2022 Alzheimer's disease facts and figures.
Alzheimers Dement. 2022 Apr;18(4):700-789. doi: 10.1002/alz.12638. Epub 2022 Mar 14.
5
Salience network anatomical and molecular markers are linked with cognitive dysfunction in mild cognitive impairment.
J Neuroimaging. 2022 Jul;32(4):728-734. doi: 10.1111/jon.12980. Epub 2022 Feb 14.
6
The interplay between gray matter and white matter neurodegeneration in subjective cognitive decline.
Aging (Albany NY). 2021 Aug 25;13(16):19963-19977. doi: 10.18632/aging.203467.
7
Increased MANF Expression in the Inferior Temporal Gyrus in Patients With Alzheimer Disease.
Front Aging Neurosci. 2021 Apr 29;13:639318. doi: 10.3389/fnagi.2021.639318. eCollection 2021.
8
Amyloid-β, cortical thickness, and subsequent cognitive decline in cognitively normal oldest-old.
Ann Clin Transl Neurol. 2021 Feb;8(2):348-358. doi: 10.1002/acn3.51273. Epub 2021 Jan 9.
9
From Local Explanations to Global Understanding with Explainable AI for Trees.
Nat Mach Intell. 2020 Jan;2(1):56-67. doi: 10.1038/s42256-019-0138-9. Epub 2020 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验