Suppr超能文献

开发和验证用于在退伍军人健康管理局中识别胰腺癌的病例发现算法。

Development and Validation of Case-Finding Algorithms to Identify Pancreatic Cancer in the Veterans Health Administration.

机构信息

Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.

VA Connecticut Healthcare System, West Haven, CT, USA.

出版信息

Dig Dis Sci. 2024 Apr;69(4):1507-1513. doi: 10.1007/s10620-024-08324-w. Epub 2024 Mar 7.

Abstract

BACKGROUND

Survival in pancreatic ductal adenocarcinoma (PDAC) remains poor due to late diagnosis. Electronic Health Records (EHRs) can be used to study this rare disease, but validated algorithms to identify PDAC in the United States EHRs do not currently exist.

AIMS

To develop and validate an algorithm using Veterans Health Administration (VHA) EHR data for the identification of patients with PDAC.

METHODS

We developed two algorithms to identify patients with PDAC in the VHA from 2002 to 2023. The algorithms required diagnosis of exocrine pancreatic cancer in either ≥ 1 or ≥ 2 of the following domains: (i) the VA national cancer registry, (ii) an inpatient encounter, or (iii) an outpatient encounter in an oncology setting. Among individuals identified with ≥ 1 of the above criteria, a random sample of 100 were reviewed by three gastroenterologists to adjudicate PDAC status. We also adjudicated fifty patients not qualifying for either algorithm. These patients died as inpatients and had alkaline phosphatase values within the interquartile range of patients who met ≥ 2 of the above criteria for PDAC. These expert adjudications allowed us to calculate the positive and negative predictive value of the algorithms.

RESULTS

Of 10.8 million individuals, 25,533 met ≥ 1 criteria (PPV 83.0%, kappa statistic 0.93) and 13,693 individuals met ≥ 2 criteria (PPV 95.2%, kappa statistic 1.00). The NPV for PDAC was 100%.

CONCLUSIONS

An algorithm incorporating readily available EHR data elements to identify patients with PDAC achieved excellent PPV and NPV. This algorithm is likely to enable future epidemiologic studies of PDAC.

摘要

背景

由于诊断较晚,胰腺导管腺癌 (PDAC) 的患者生存率仍然很低。电子健康记录 (EHR) 可用于研究这种罕见疾病,但目前在美国 EHR 中还没有用于识别 PDAC 的经过验证的算法。

目的

利用退伍军人健康管理局 (VHA) 的 EHR 数据开发和验证一种用于识别 PDAC 患者的算法。

方法

我们开发了两种算法,用于从 2002 年到 2023 年在 VHA 中识别 PDAC 患者。该算法需要在以下至少一个域中诊断出外分泌胰腺癌:(i) VA 国家癌症登记处,(ii) 住院患者就诊,或 (iii) 肿瘤科门诊就诊。在符合上述标准之一的个体中,随机抽取 100 名个体由三位胃肠病学家进行审查,以确定 PDAC 状态。我们还对不符合这两种算法的 50 名患者进行了裁决。这些患者作为住院患者死亡,并且碱性磷酸酶值在符合 PDAC 上述标准≥2 项的患者的四分位距内。这些专家裁决使我们能够计算算法的阳性和阴性预测值。

结果

在 1080 万人中,有 25533 人符合≥1 项标准(PPV83.0%,kappa 统计量 0.93),有 13693 人符合≥2 项标准(PPV95.2%,kappa 统计量 1.00)。PDAC 的 NPV 为 100%。

结论

一种结合了 EHR 中易于获取的数据元素的算法,可用于识别 PDAC 患者,其具有较高的阳性预测值和阴性预测值。该算法很可能使未来对 PDAC 的流行病学研究成为可能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验