Suppr超能文献

利用考虑气象数据的人工神经网络模型对墨西哥不同风险登革热病例进行并行预测。

Parallel prediction of dengue cases with different risks in Mexico using an artificial neural network model considering meteorological data.

机构信息

Centro de Investigación en Recursos Energéticos y Sustentables, Universidad Veracruzana, Av. Universidad Km 7.5, Col. Santa Isabel, Coatzacoalcos, CP 96535, Veracruz, México.

Facultad de Ciencias Químicas-Centro de Investigación en Recursos Energéticos y Sustentables, Universidad Veracruzana, Campus Coatzacoalcos, Av. Universidad Km. 7.5, Col. Santa Isabel, Coatzacoalcos, CP 96538, Veracruz, México.

出版信息

Int J Biometeorol. 2024 Jun;68(6):1043-1060. doi: 10.1007/s00484-024-02643-3. Epub 2024 Mar 8.

Abstract

In 2022, Mexico registered an increase in dengue cases compared to the previous year. On the other hand, the amount of precipitation reported annually was slightly less than the previous year. Similarly, the minimum-mean-maximum temperatures recorded annually were below the previous year. In the literature, it is possible to find studies focused on the spread of dengue only for some specific regions of Mexico. However, given the increase in the number of cases during 2022 in regions not considered by previously published works, this study covers cases reported in all states of the country. On the other hand, determining a relationship between the dynamics of dengue cases and climatic factors through a computational model can provide relevant information on the transmission of the virus. A multiple-learning computational approach was developed to simulate the number of the different risks of dengue cases according to the classification reported per epidemiological week by considering climatic factors in Mexico. For the development of the model, the data were obtained from the reports published in the Epidemiological Panorama of Dengue in Mexico and in the National Meteorological Service. The classification of non-severe dengue, dengue with warning signs, and severe dengue were modeled in parallel through an artificial neural network model. Five variables were considered to train the model: the monthly average of the minimum, mean, and maximum temperatures, the precipitation, and the number of the epidemiological week. The selection of variables in this work is focused on the spread of the different risks of dengue once the mosquito begins transmitting the virus. Therefore, temperature and precipitation were chosen as climatic factors due to the close relationship between the density of adult mosquitoes and the incidence of the disease. The Levenberg-Marquardt algorithm was applied to fit the coefficients during the learning process. In the results, the ANN model simulated the classification of the different risks of dengue with the following precisions (R): 0.9684, 0.9721, and 0.8001 for non-severe dengue, with alarm signs and severe, respectively. Applying a correlation matrix and a sensitivity analysis of the ANN model coefficients, both the average minimum temperature and precipitation were relevant to predict the number of dengue cases. Finally, the information discovered in this work can support the decision-making of the Ministry of Health to avoid a syndemic between the increase in dengue cases and other seasonal diseases.

摘要

2022 年,墨西哥的登革热病例数比前一年有所增加。另一方面,报告的年降水量略低于前一年。同样,每年记录的最低-平均-最高温度也低于前一年。在文献中,可以找到仅针对墨西哥某些特定地区登革热传播的研究。然而,鉴于 2022 年在以前发表的作品未涵盖的地区,病例数量有所增加,因此本研究涵盖了该国所有州报告的病例。另一方面,通过计算模型确定登革热病例与气候因素之间的关系,可以提供有关病毒传播的相关信息。开发了一种多学习计算方法,根据墨西哥的气候因素,根据每两周报告的流行病学周报告的分类,模拟不同登革热风险病例的数量。为了开发该模型,从在墨西哥登革热流行病学全景和国家气象服务中发布的报告中获取了数据。通过人工神经网络模型并行对非重症登革热、有警告信号的登革热和重症登革热进行分类。考虑了五个变量来训练模型:最低、平均和最高月平均温度、降水量和流行病学周数。本工作中变量的选择侧重于蚊子开始传播病毒后不同登革热风险的传播。因此,选择温度和降水作为气候因素,因为它们与成蚊密度和疾病发病率之间存在密切关系。在学习过程中应用了 Levenberg-Marquardt 算法来拟合系数。在结果中,ANN 模型模拟了以下精度的不同风险登革热分类(R):非重症登革热、有警报症状的登革热和重症登革热分别为 0.9684、0.9721 和 0.8001。应用 ANN 模型系数的相关矩阵和敏感性分析,平均最低温度和降水均与预测登革热病例数相关。最后,这项工作中发现的信息可以为卫生部的决策提供支持,以避免登革热病例增加与其他季节性疾病之间的同时发生。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验