Suppr超能文献

磁流体动力微极纳米流体绕滑移拉伸平板的交叉扩散流动。

Cross-diffusive flow of MHD micropolar nanofluid past a slip stretching plate.

作者信息

Tian Xiyan, Yang Bingbing, Na Xin, Ba Liankang, Yuan Yi

机构信息

Key Laboratory of National Education Ministry for Electromagnetic Processing of Materials, POB 314, Northeastern University, Shenyang 110819, China.

School of Metallurgy, POB 314, Northeastern University, Shenyang 110819, China.

出版信息

Heliyon. 2024 Feb 28;10(5):e26958. doi: 10.1016/j.heliyon.2024.e26958. eCollection 2024 Mar 15.

Abstract

As a novel fluid of functional material, magnetohydrodynamic (MHD) micropolar fluid has the special properties of light, heat, magnetic and so on. It is of highly practical significance. The characteristics of flow, heat and mass transfer in MHD micropolar nanofluid boundary layer past a stretching plate are investigated based on the micropolar fluid theory in the present numerical work. In the presence of magnetic field, viscous dissipation and the cross-diffusion caused by Dufour effect and Soret effect are considered. First order slip velocity condition is employed. Mathematical models are built based on the assumptions. Collocation spectral method (CSM) via matrix multiplication is adopted to solve the two-dimensional dimensionless nonlinear partial governing equations. The program codes based on CSM is developed, validated and employed. The coupled effects of microrotation, Dufour effect, Soret effect, magnetic field as well as first order slip velocity boundary condition on the flow, heat and mass transfer are revealed. Besides, the variation trends of local Nusselt number and Sherwood number are analyzed in detail. The numerical results indicate that the fluid flow can be suppressed obviously in the consideration of slip condition and magnetic field. As slip parameter and magnetic parameter rise, the velocity in the boundary layer becomes lower gradually; further, both temperature and concentration increase. On the other hand, the opposite trend can be noticed with the effect of material parameter . Moreover, and augment the temperature; while, leads to an upsurge in concentration. The temperature rises by about with Dufour effect and enlarges by a factor of about with Soret effect. The concentration boundary layer decreases by about 37.50% is when .

摘要

作为一种新型的功能材料流体,磁流体动力学(MHD)微极流体具有光、热、磁等特殊性质。它具有高度的实际意义。基于微极流体理论,在当前的数值研究中,对MHD微极纳米流体边界层绕拉伸平板的流动、传热和传质特性进行了研究。在存在磁场的情况下,考虑了粘性耗散以及由杜福尔效应和索雷特效应引起的交叉扩散。采用一阶滑移速度条件。基于这些假设建立了数学模型。采用通过矩阵乘法的配置谱方法(CSM)来求解二维无量纲非线性偏微分控制方程。开发、验证并应用了基于CSM的程序代码。揭示了微旋转、杜福尔效应、索雷特效应、磁场以及一阶滑移速度边界条件对流动、传热和传质的耦合效应。此外,详细分析了局部努塞尔数和舍伍德数的变化趋势。数值结果表明,在考虑滑移条件和磁场的情况下,流体流动可以明显受到抑制。随着滑移参数和磁参数的增加,边界层中的速度逐渐降低;此外,温度和浓度都升高。另一方面,对于材料参数的影响,可以观察到相反的趋势。而且, 和 使温度升高;而 导致浓度升高。考虑杜福尔效应时温度升高约 ,考虑索雷特效应时浓度增大约 倍。当 时,浓度边界层减小约37.50% 。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e363/10918197/63206eabcf2f/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验