M Amudhini, De Poulomi
Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Chennai, 600127, Tamilnadu, India.
Heliyon. 2024 Aug 5;10(15):e35731. doi: 10.1016/j.heliyon.2024.e35731. eCollection 2024 Aug 15.
Present study investigates influence of Soret-Dufour effects on MHD unsteady flow of a tetra-hybrid nanofluid (AlO, Cu, SiO and TiO with base fluid water) within non-Darcy porous stretching cylinder. Additionally, chemical reaction, activation energy, and heat generation are considered. This research contributes to the understanding of how these nanofluids can optimize heat and mass transfer process in applications such as advanced cooling systems, solar collectors, biomedical devices, and chemical reactors. Tetra-hybrid nanofluids are selected as per novel aspects for their exceptional ability to adapt their properties for diverse applications, including advanced thermal management systems and scenarios requiring high thermal and electrical conductivity. The comparison between hybrid, tri-hybrid, and tetra-hybrid nanofluids serves to evaluate how increasing complexity and diversity in nanoparticle combinations impact thermal and flow characteristics. The prevailing PDE's undergo transformation into nonlinear ODE's through the utilization of similarity variables and numerically solved using fifth order Runge-Kutta Fehlberg method with shooting method. It is established that rising unsteady parameter values result in increasing velocity profile and rising shape factor parameter result in higher heat transfer. Specifically, the Nusselt number increases by 24 % in the tri-hybrid and 11 % in the tetra-hybrid with a higher Soret number, whereas the Sherwood number decreases by 38 % in the tri-hybrid and 26 % in the tetra-hybrid nanofluid. Employing sensitivity analysis, this study also aims to investigate impact of output responses such as local Nusselt number and local Sherwood number on input parameter Dufour number, Soret number and chemical reaction parameter for tri-hybrid and tetra-hybrid nanofluid. It is found out that Dufour number in tetra-hybrid nanofluid has the more significant impact on the Nusselt number, whereas the Soret number predominantly affects the Nusselt number in tri-hybrid nanofluid. These findings underscore the potential of tetra-hybrid nanofluid in enhancing the performance of various industrial and environmental processes.
本研究考察了索雷特-杜福尔效应(Soret-Dufour effects)对非达西多孔拉伸圆柱体内四元混合纳米流体(AlO、Cu、SiO和TiO与基液水)的磁流体动力学非定常流动的影响。此外,还考虑了化学反应、活化能和热生成。本研究有助于理解这些纳米流体如何在先进冷却系统、太阳能集热器、生物医学设备和化学反应器等应用中优化传热传质过程。四元混合纳米流体因其能够根据不同应用调整其特性的特殊能力而被选为具有新颖特性的材料,这些应用包括先进的热管理系统以及需要高导热率和高电导率的场景。混合、三元混合和四元混合纳米流体之间的比较有助于评估纳米颗粒组合中增加的复杂性和多样性如何影响热特性和流动特性。通过使用相似变量,将主导的偏微分方程转化为非线性常微分方程,并采用五阶龙格-库塔-费尔贝格(Runge-Kutta Fehlberg)方法和打靶法进行数值求解。结果表明,非定常参数值的增加会导致速度分布增加,形状因子参数的增加会导致更高的传热。具体而言,在索雷特数较高时,三元混合纳米流体的努塞尔数增加24%,四元混合纳米流体的努塞尔数增加11%,而三元混合纳米流体的舍伍德数减少38%,四元混合纳米流体的舍伍德数减少26%。通过敏感性分析,本研究还旨在考察三元混合和四元混合纳米流体中局部努塞尔数和局部舍伍德数等输出响应对输入参数杜福尔数、索雷特数和化学反应参数的影响。研究发现,四元混合纳米流体中的杜福尔数对努塞尔数有更显著的影响,而索雷特数主要影响三元混合纳米流体中的努塞尔数。这些发现强调了四元混合纳米流体在提高各种工业和环境过程性能方面的潜力。