Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States.
Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue Center for Cancer Research, Purdue University, 575 W. Stadium Avenue, West Lafayette, Indiana 47904, United States.
J Am Soc Mass Spectrom. 2024 Apr 3;35(4):756-766. doi: 10.1021/jasms.3c00443. Epub 2024 Mar 8.
G-quadruplex (G4) DNA can form highly stable secondary structures in the presence of metal cations, and research has shown its potential as a transcriptional regulator for oncogenes in the human genome. In order to explore the interactions of DNA with metal cations using mass spectrometry, employing complementary fragmentation methods can enhance structural information. This study explores the use of ion-ion reactions for sequential negative electron transfer collision-induced dissociation (nET-CID) as a complement to traditional ion-trap CID (IT-CID). The resulting nET-CID data for G4 anions with and without metal cations show an increase in fragment ion type diversity and yield of structurally informative ions relative to IT-CID. The nET-CID yields greater sequence coverage by virtue of fragmentation at the 3'-side of thymine residues, which is lacking with IT-CID. Potassium adductions to backbone fragments in IT-CID and nET-CID spectra were nearly identical. Of note is a prominent fragment resulting from a loss of a 149 Da anion seen in nET-CID of large, G-rich sequences, proposed to be radical anion guanine loss. Neutral loss of neutral guanine (151 Da) and deprotonated nucleobase loss (150 Da) have been previously reported, but this is the first report of radical anion guanine loss (149 Da). Confirmation of the identity of the 149 Da anion results from the examination of the homonucleobase sequence 5'-GGGGGGGG-3'. Loss of a charged adenine radical anion at much lower relative abundance was also noted for the sequence 5'-AAAAAAAA-3'. DFT modeling indicates that the loss of a nucleobase as a radical anion from odd-electron nucleic acid anions is a thermodynamically favorable fragmentation pathway for G.
G-四链体(G4)DNA 在金属阳离子存在下可以形成高度稳定的二级结构,研究表明其在人类基因组中作为癌基因的转录调节剂具有潜力。为了使用质谱法研究 DNA 与金属阳离子的相互作用,采用互补的碎裂方法可以增强结构信息。本研究探索了离子-离子反应在顺序负电子转移碰撞诱导解离(nET-CID)中的应用,作为传统离子阱 CID(IT-CID)的补充。与 IT-CID 相比,具有和不具有金属阳离子的 G4 阴离子的 nET-CID 数据显示出片段离子类型多样性和结构信息离子产率的增加。nET-CID 通过在胸腺嘧啶残基的 3'-侧进行碎裂,从而实现更大的序列覆盖,而 IT-CID 则缺乏这种碎裂。在 IT-CID 和 nET-CID 光谱中,钾加合物与骨干片段的加合几乎相同。值得注意的是,在 nET-CID 中,大的 G 富序列中观察到一个显著的片段丢失 149 Da 阴离子,推测为自由基阴离子鸟嘌呤丢失。先前已经报道了中性鸟嘌呤(151 Da)的中性损失和去质子化碱基损失(150 Da),但这是首次报道自由基阴离子鸟嘌呤丢失(149 Da)。通过检查同核碱基序列 5'-GGGGGGGG-3',证实了 149 Da 阴离子的身份。还注意到序列 5'-AAAAAAAA-3'中带电荷的腺嘌呤自由基阴离子的相对丰度较低。DFT 建模表明,奇数电子核酸阴离子作为自由基阴离子失去一个碱基是 G 的一种热力学有利的碎裂途径。