Suppr超能文献

药物流行病学中的准实验方法:疫苗评估的病例研究中的差异中的差异和综合控制方法。

Quasi-experimental methods for pharmacoepidemiology: difference-in-differences and synthetic control methods with case studies for vaccine evaluation.

机构信息

Department of Mathematics and Statistics, Vassar College, Poughkeepsie, NY 12604, United States.

出版信息

Am J Epidemiol. 2024 Jul 8;193(7):1050-1058. doi: 10.1093/aje/kwae019.

Abstract

Difference-in-differences and synthetic control methods have become common study designs for evaluating the effects of changes in policies, including health policies. They also have potential for providing real-world effectiveness and safety evidence in pharmacoepidemiology. To effectively add to the toolkit of the field, however, designs-including both their benefits and drawbacks-must be well understood. Quasi-experimental designs provide an opportunity to estimate the average treatment effect on the treated without requiring the measurement of all possible confounding factors, and to assess population-level effects. This requires, however, other key assumptions, including the parallel trends or stable weighting assumptions, a lack of other concurrent events that could alter time trends, and an absence of contamination between exposed and unexposed units. The targeted estimands are also highly specific to the settings of the study, and combining across units or time periods can be challenging. Case studies are presented for 3 vaccine evaluation studies, showcasing some of these challenges and opportunities in a specific field of pharmacoepidemiology. These methods provide feasible and valuable sources of evidence in various pharmacoepidemiologic settings and can be improved through research to identify and weigh the advantages and disadvantages in those settings. This article is part of a Special Collection on Pharmacoepidemiology.

摘要

差异分析和合成控制法已经成为评估政策变化(包括卫生政策)效果的常用研究设计。它们也有可能在药物流行病学中提供实际有效性和安全性证据。然而,为了有效地增加该领域的工具包,必须充分了解这些设计——包括它们的优点和缺点。准实验设计提供了一种机会,可以在不需要测量所有可能混杂因素的情况下估计对处理者的平均治疗效果,并评估人群水平的效果。然而,这需要其他关键假设,包括平行趋势或稳定加权假设、没有其他可能改变时间趋势的同时发生事件,以及暴露和未暴露单位之间没有污染。靶向估计值也高度特定于研究的环境,并且跨单位或时间段进行组合可能具有挑战性。本文提供了 3 个疫苗评估研究的案例研究,在药物流行病学的特定领域展示了这些挑战和机遇。这些方法在各种药物流行病学环境中提供了可行和有价值的证据来源,并可以通过研究来改进,以确定和权衡这些环境中的优缺点。本文是药物流行病学特刊的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f25e/11228849/cedf7d10bde2/kwae019f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验