Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany.
Eigenvision AB, Malmö, Sweden.
Eur J Nucl Med Mol Imaging. 2024 Jul;51(8):2293-2307. doi: 10.1007/s00259-024-06668-z. Epub 2024 Mar 8.
Multiple myeloma (MM) is a highly heterogeneous disease with wide variations in patient outcome. [F]FDG PET/CT can provide prognostic information in MM, but it is hampered by issues regarding standardization of scan interpretation. Our group has recently demonstrated the feasibility of automated, volumetric assessment of bone marrow (BM) metabolic activity on PET/CT using a novel artificial intelligence (AI)-based tool. Accordingly, the aim of the current study is to investigate the prognostic role of whole-body calculations of BM metabolism in patients with newly diagnosed MM using this AI tool.
Forty-four, previously untreated MM patients underwent whole-body [F]FDG PET/CT. Automated PET/CT image segmentation and volumetric quantification of BM metabolism were based on an initial CT-based segmentation of the skeleton, its transfer to the standardized uptake value (SUV) PET images, subsequent application of different SUV thresholds, and refinement of the resulting regions using postprocessing. In the present analysis, ten different uptake thresholds (AI approaches), based on reference organs or absolute SUV values, were applied for definition of pathological tracer uptake and subsequent calculation of the whole-body metabolic tumor volume (MTV) and total lesion glycolysis (TLG). Correlation analysis was performed between the automated PET values and histopathological results of the BM as well as patients' progression-free survival (PFS) and overall survival (OS). Receiver operating characteristic (ROC) curve analysis was used to investigate the discrimination performance of MTV and TLG for prediction of 2-year PFS. The prognostic performance of the new Italian Myeloma criteria for PET Use (IMPeTUs) was also investigated.
Median follow-up [95% CI] of the patient cohort was 110 months [105-123 months]. AI-based BM segmentation and calculation of MTV and TLG were feasible in all patients. A significant, positive, moderate correlation was observed between the automated quantitative whole-body PET/CT parameters, MTV and TLG, and BM plasma cell infiltration for all ten [F]FDG uptake thresholds. With regard to PFS, univariable analysis for both MTV and TLG predicted patient outcome reasonably well for all AI approaches. Adjusting for cytogenetic abnormalities and BM plasma cell infiltration rate, multivariable analysis also showed prognostic significance for high MTV, which defined pathological [F]FDG uptake in the BM via the liver. In terms of OS, univariable and multivariable analysis showed that whole-body MTV, again mainly using liver uptake as reference, was significantly associated with shorter survival. In line with these findings, ROC curve analysis showed that MTV and TLG, assessed using liver-based cut-offs, could predict 2-year PFS rates. The application of IMPeTUs showed that the number of focal hypermetabolic BM lesions and extramedullary disease had an adverse effect on PFS.
The AI-based, whole-body calculations of BM metabolism via the parameters MTV and TLG not only correlate with the degree of BM plasma cell infiltration, but also predict patient survival in MM. In particular, the parameter MTV, using the liver uptake as reference for BM segmentation, provides solid prognostic information for disease progression. In addition to highlighting the prognostic significance of automated, global volumetric estimation of metabolic tumor burden, these data open up new perspectives towards solving the complex problem of interpreting PET scans in MM with a simple, fast, and robust method that is not affected by operator-dependent interventions.
多发性骨髓瘤(MM)是一种高度异质性疾病,患者的预后差异很大。[F]FDG PET/CT 可提供 MM 的预后信息,但由于扫描解释的标准化问题而受到限制。我们的团队最近证明了使用新型人工智能(AI)工具对 PET/CT 进行骨髓(BM)代谢活性的自动、容积评估的可行性。因此,目前研究的目的是使用该 AI 工具研究新诊断 MM 患者全身 BM 代谢计算的预后作用。
44 名未经治疗的 MM 患者接受了全身[F]FDG PET/CT 检查。基于初始 CT 骨骼分割的自动 PET/CT 图像分割和 BM 代谢的容积量化、在标准化摄取值(SUV)PET 图像上的转移、随后应用不同的 SUV 阈值,以及使用后处理对所得区域进行细化。在本分析中,基于参考器官或绝对 SUV 值,应用了十种不同的摄取阈值(AI 方法)来定义病理性示踪剂摄取,并随后计算全身代谢肿瘤体积(MTV)和总病变糖酵解(TLG)。对自动 PET 值与 BM 组织学结果以及患者无进展生存期(PFS)和总生存期(OS)之间进行了相关性分析。接收者操作特征(ROC)曲线分析用于研究 MTV 和 TLG 对预测 2 年 PFS 的区分性能。还研究了新的意大利骨髓瘤 PET 使用标准(IMPeTUs)的预后性能。
患者队列的中位随访时间[95%CI]为 110 个月[105-123 个月]。在所有患者中,基于 AI 的 BM 分割和 MTV 和 TLG 的计算都是可行的。在所有十种[F]FDG 摄取阈值下,观察到自动定量全身 PET/CT 参数 MTV 和 TLG 与 BM 浆细胞浸润之间存在显著、正相关,中等相关性。关于 PFS,对于 MTV 和 TLG 的单变量分析均能很好地预测患者的预后。在调整细胞遗传学异常和 BM 浆细胞浸润率后,多变量分析也显示高 MTV 具有预后意义,这通过肝脏定义了 BM 中的病理性[F]FDG 摄取。关于 OS,单变量和多变量分析表明,全身 MTV 再次主要使用肝脏摄取作为参考,与较短的生存时间显著相关。与这些发现一致,ROC 曲线分析表明,使用基于肝脏的截止值评估的 MTV 和 TLG 可以预测 2 年 PFS 率。IMPeTUs 的应用表明,焦点性高代谢性 BM 病变和骨髓外疾病的数量对 PFS 有不利影响。
基于 AI 的全身 BM 代谢计算,通过 MTV 和 TLG 等参数,不仅与 BM 浆细胞浸润程度相关,而且还可以预测 MM 患者的生存情况。特别是,使用肝脏摄取作为 BM 分割参考的参数 MTV 为疾病进展提供了可靠的预后信息。除了强调自动、全局代谢肿瘤负荷容积估计的预后意义外,这些数据还为解决 MM 中 PET 扫描解释的复杂问题开辟了新的视角,提供了一种简单、快速、稳健的方法,不受操作人员干预的影响。