Suppr超能文献

基于热记忆冲击的多参数广义 Mittag-Leffler 核分数阶生物传热模型的特殊函数形式解。

Special function form solutions of multi-parameter generalized Mittag-Leffler kernel based bio-heat fractional order model subject to thermal memory shocks.

机构信息

IT4Innovations, VSB-Technical University of Ostrava, Ostrava, Czech Republic.

Department of Computer Science and Mathematics, Lebanese American University, Byblos, Lebanon.

出版信息

PLoS One. 2024 Mar 8;19(3):e0299106. doi: 10.1371/journal.pone.0299106. eCollection 2024.

Abstract

The primary objective of this research is to develop a mathematical model, analyze the dynamic occurrence of thermal shock and exploration of how thermal memory with moving line impact of heat transfer within biological tissues. An extended version of the Pennes equation as its foundational framework, a new fractional modelling approach called the Prabhakar fractional operator to investigate and a novel time-fractional interpretation of Fourier's law that incorporates its historical behaviour. This fractional operator has multi parameter generalized Mittag-Leffler kernel. The fractional formulation of heat flow, achieved through a generalized fractional operator with a non-singular type kernel, enables the representation of the finite propagation speed of heat waves. Furthermore, the dynamics of thermal source continually generates a linear thermal shock at predefined locations within the tissue. Introduced the appropriate set of variables to transform the governing equations into dimensionless form. Laplace transform (LT) is operated on the fractional system of equations and results are presented in series form and also expressed the solution in the form of special functions. The article derives analytical solutions for the heat transfer phenomena of both the generalized model, in the Laplace domain, and the ordinary model in the real domain, employing Laplace inverse transformation. The pertinent parameter's influence, such as α, β, γ, a0, b0, to gain insights into the impact of the thermal memory parameter on heat transfer, is brought under consideration to reveal the interesting results with graphical representations of the findings.

摘要

本研究的主要目的是建立一个数学模型,分析热冲击的动态发生过程,并探讨具有移动线的热记忆对生物组织内传热的影响。该模型以彭内斯方程为基础框架,采用扩展形式,并引入一种新的分数建模方法,即 Prabhakar 分数算子,以研究和探索傅立叶定律的时间分数解释,其中包含其历史行为。这个分数算子具有多参数广义 Mittag-Leffler 核。通过使用具有非奇异核的广义分数算子来实现热流的分数形式化,可以表示热波的有限传播速度。此外,热源的动态不断在组织内的预定位置产生线性热冲击。引入适当的变量集将控制方程转换为无量纲形式。在分数系统的方程上进行拉普拉斯变换(LT),并以级数形式呈现结果,同时也以特殊函数的形式表示解。本文在拉普拉斯域中为广义模型和实域中的常规模型推导了传热现象的解析解,使用拉普拉斯逆变换。考虑了相关参数的影响,如 α、β、γ、a0、b0,以深入了解热记忆参数对传热的影响,并通过图形表示来揭示有趣的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62ae/10923449/e96e3ba556cb/pone.0299106.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验