College of Computer and Information sciences, Fujian Agriculture and Forestry University, Fuzhou, China.
Research Institute of Xi Jinping Ecological Civilization, Fujian Agriculture and Forestry University, Fuzhou, China.
PLoS One. 2024 Mar 8;19(3):e0298811. doi: 10.1371/journal.pone.0298811. eCollection 2024.
Based on monthly economic data spanning from January 2015 to December 2022, we have established an analytical framework to examine the "Russia-Ukraine conflict-financial market pressure and energy market-China carbon emission trading prices." To achieve this objective, we developed indices for financial system pressure, the energy market, and investor sentiment, applying a mediation effects model to validate their transmission mechanisms. Subsequently, the TVP-SV-VAR model was employed to scrutinize the nonlinear impact of the Russia-Ukraine conflict on the valuation of China's carbon emission trading rights. This model integrates time-varying parameters (TVP) and stochastic volatility (SV), utilizing Markov Chain Monte Carlo (MCMC) technology for parameter estimation. Finally, various wavelet analysis techniques, including continuous wavelet transform, cross-wavelet transform, and wavelet coherence spectrum, were applied to decompose time series data into distinct time-frequency scales, facilitating an analysis of the lead-lag relationships within each time series. The research outcomes provide crucial insights for safeguarding the interests of trading organizations, refining the structure of the carbon market, and mitigating systemic risks on a global scale.
基于 2015 年 1 月至 2022 年 12 月的月度经济数据,我们建立了一个分析框架,以研究“俄乌冲突-金融市场压力和能源市场-中国碳交易价格”。为了实现这一目标,我们开发了金融系统压力、能源市场和投资者情绪指数,并采用中介效应模型验证其传递机制。随后,我们使用 TVP-SV-VAR 模型来研究俄乌冲突对中国碳交易权估值的非线性影响。该模型结合了时变参数(TVP)和随机波动(SV),利用马尔可夫链蒙特卡罗(MCMC)技术进行参数估计。最后,我们应用了各种小波分析技术,包括连续小波变换、交叉小波变换和小波相干谱,将时间序列数据分解为不同的时频尺度,分析每个时间序列内的领先-滞后关系。研究结果为保护交易组织的利益、完善碳市场结构以及在全球范围内降低系统性风险提供了重要的参考。