State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China; China National Botanical Garden, Beijing 100093, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing Construction Engineering Group Environmental Remediation Co. Ltd., Beijing 100015, PR China.
State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China; China National Botanical Garden, Beijing 100093, PR China.
Water Res. 2024 May 1;254:121412. doi: 10.1016/j.watres.2024.121412. Epub 2024 Mar 3.
Wetlands export large amounts of dissolved organic carbon (DOC) downstream, which is sensitive to water-table fluctuations (WTFs). While numerous studies have shown that WTFs may decrease wetland DOC via enhancing DOC biodegradation, an alternative pathway, i.e., retention of dissolved organic matter (DOM) by soil minerals, remains under-investigated. Here, we conducted a water-table manipulation experiment on intact soil columns collected from three wetlands with varying contents of reactive metals and clay to examine the potential retention of DOM by soil minerals during WTFs. Using batch sorption experiments and Fourier transform ion cyclotron resonance mass spectrometry, we showed that mineral (bentonite) sorption mainly retained lignin-, aromatic- and humic-like compounds (i.e., adsorbable compounds), in contrast to the preferential removal of protein- and carbohydrate-like compounds during biodegradation. Seven cycles of WTFs significantly decreased the intensity of adsorbable compounds in DOM (by 50 ± 21% based on fluorescence spectroscopy) and DOC adsorbability (by 2-20% and 1.9-12.7 mg L based on batch sorption experiment), to a comparable extent compared with biodegradable compounds (by 11-32% and 1.6-15.2 mg L). Furthermore, oxidation of soil ferrous iron [Fe(II)] exerted a major control on the magnitude of potential DOM retention by minerals, while WTFs increased mineral-bound lignin phenols in the Zoige soil with the highest content of lignin phenols and Fe(II). Collectively, these results suggest that DOM retention by minerals likely played an important role in DOC decrease during WTFs, especially in soils with high contents of oxidizable Fe. Our findings support the 'iron gate' mechanism of soil carbon protection by newly-formed Fe (hydr)oxides during water-table decline, and highlight an underappreciated process (mineral-DOM interaction) leading to contrasting fate (i.e., preservation) of DOC in wetlands compared to biodegradation. Mineral retention of wetland DOC hence deserves more attention under changing climate and human activities.
湿地向下游输出大量溶解有机碳(DOC),而这些碳对地下水位波动(WTFs)较为敏感。尽管有大量研究表明,WTFs 可能通过增强 DOC 生物降解来减少湿地 DOC,但另一种途径,即土壤矿物质对溶解有机质(DOM)的保留,仍未得到充分研究。在这里,我们对取自三个湿地的完整土壤柱进行了地下水位处理实验,这三个湿地的反应性金属和粘土含量不同,以检验 WTFs 期间土壤矿物质对 DOM 的潜在保留能力。通过批处理吸附实验和傅里叶变换离子回旋共振质谱分析,我们表明,矿物(膨润土)吸附主要保留了木质素、芳香族和腐殖质样化合物(即可吸附化合物),而在生物降解过程中,蛋白质和碳水化合物样化合物则被优先去除。七轮 WTFs 显著降低了 DOM 中可吸附化合物的强度(荧光光谱法测定,降低了 50±21%)和 DOC 的吸附能力(批处理吸附实验测定,降低了 2-20%和 1.9-12.7mg/L),与生物降解化合物(降低了 11-32%和 1.6-15.2mg/L)的降低程度相当。此外,土壤亚铁([Fe(II)])的氧化对矿物质潜在 DOM 保留量的大小有主要控制作用,而 WTFs 增加了含有最高含量木质素酚和 Fe(II)的若尔盖土壤中矿物质结合的木质素酚。总的来说,这些结果表明,在地下水位下降期间,矿物质对 DOM 的保留可能在 DOC 减少中发挥了重要作用,特别是在含有高含量可氧化铁的土壤中。我们的研究结果支持了地下水位下降时新形成的 Fe(氢)氧化物对土壤碳保护的“铁闸”机制,并强调了一个被低估的过程(矿物质-DOM 相互作用),与生物降解相比,该过程导致湿地中 DOC 命运(即保存)截然不同。因此,在气候变化和人类活动下,湿地 DOC 的矿物质保留应得到更多关注。