Chen Cheng, Wei Shiwen, Zhang Qiang, Yang Huijun, Xu Jiaxin, Chen Liangzhe, Liu Xinghai
Electronic Information School, Wuhan University, Wuhan 480032, China.
School of Electronic Information Engineering, Jingchu University of Technology, Jingmen 448000, China.
J Colloid Interface Sci. 2024 Jun 15;664:53-62. doi: 10.1016/j.jcis.2024.03.012. Epub 2024 Mar 4.
As a progressive electronic energy storage device, the flexible supercapacitor holds tremendous promise for powering wearable/portable electronic products. Of various pseudocapacitor materials, vanadium dioxide (VO) has garnered extensive attention due to its impressive theoretical capacitance. However, the challenges of inferior cycling life and lower energy density to be addressed. Herein, we prepare VO nanorods with winding carbon nanotubes (CNT) via a facile solvothermal route, followed by in situ polymerization of polyaniline (PANI) shell. Taking full advantage of the synergistic effect, the VO/CNT@PANI composite delivers a high specific capacitance of 354.2F/g at 0.5 A/g and a long cycling life of ∼ 88.2 % over 5000 cycles resulting from the enhanced conductivity of CNT and stabilization of PANI shell. By screen printing the formulated inks with outstanding rheological behaviours, we manufacture an in-planar VO/CNT@PANI symmetric supercapacitor (VO/CNT@PANI SSC) device featuring an orderly arrangement structure. This device yields a remarkable areal energy density of 99.57 μWh/cm at a power density of 387.5 μW/cm while retaining approximately ∼ 87.6 % of its initial capacitance after prolonged use. Furthermore, we successfully powered a portable game machine for more than 2 min using two SSCs connected in series with ease. Therefore, this work presents a universal strategy that utilises combination and coating to boost electrochemical performance for flexible high-performance supercapacitors.
作为一种先进的电子储能装置,柔性超级电容器在为可穿戴/便携式电子产品供电方面具有巨大潜力。在各种赝电容材料中,二氧化钒(VO₂)因其令人印象深刻的理论电容而备受关注。然而,其循环寿命较差和能量密度较低的问题仍有待解决。在此,我们通过简便的溶剂热法制备了缠绕有碳纳米管(CNT)的VO₂纳米棒,随后原位聚合聚苯胺(PANI)壳层。充分利用协同效应,VO₂/CNT@PANI复合材料在0.5 A/g时具有354.2F/g的高比电容,并且在5000次循环中具有约88.2%的长循环寿命,这得益于CNT导电性的增强和PANI壳层的稳定性。通过丝网印刷具有出色流变性能的配方油墨,我们制造了一种具有有序排列结构的平面内VO₂/CNT@PANI对称超级电容器(VO₂/CNT@PANI SSC)器件。该器件在功率密度为387.5 μW/cm²时具有99.57 μWh/cm²的显著面积能量密度,并且在长时间使用后仍保留约87.6%的初始电容。此外,我们轻松地使用两个串联连接的SSC成功为一台便携式游戏机供电超过2分钟。因此,这项工作提出了一种通用策略,即利用组合和涂层来提高柔性高性能超级电容器的电化学性能。