Department of Civil and Environmental Engineering, University of California, Davis, United States.
Department of Civil and Environmental Engineering, University of California, Davis, United States.
Bioresour Technol. 2024 May;399:130551. doi: 10.1016/j.biortech.2024.130551. Epub 2024 Mar 7.
Biochar, formed through slow pyrolysis of biomass, has garnered attention as a pathway to bind atmospheric carbon in products. However, life cycle assessment data for biomass pyrolysis have limitations in data quality, particularly for novel processes. Here, a compositional, predictive model of slow pyrolysis is developed, with a focus on CO fluxes and energy products, reflecting mass-weighted cellulose, hemicellulose, and lignin pyrolysis products for a given pyrolysis temperature. This model accurately predicts biochar yields and composition within 5 % of experimental values but shows broader distributions for bio-oil and syngas (typically within 20 %). This model is demonstrated on common feedstocks to quantify biochar yield, energy, and CO emissions as a function of temperature and produce key life cycle inventory flows (e.g., 0.73 kg CO2/kg poplar biochar bound carbon at 500 °C). This model can be adapted to any lignocellulosic biomass to inform development of pyrolysis processes that maximize carbon sequestration.
生物炭是通过生物质的慢速热解形成的,它作为一种将大气碳固定在产品中的途径而受到关注。然而,生物质热解的生命周期评估数据在数据质量方面存在局限性,特别是对于新型工艺。在这里,开发了一种慢速热解的组成预测模型,重点关注 CO 通量和能量产物,反映给定热解温度下质量加权的纤维素、半纤维素和木质素热解产物。该模型能够准确预测生物炭的产率和组成,误差在 5%以内,但生物油和合成气的分布范围较宽(通常在 20%以内)。该模型以常见的原料为例,量化了生物炭产率、能量和 CO 排放作为温度的函数,并生成了关键的生命周期清单流(例如,在 500°C 时,每公斤杨树生物炭结合碳的 CO2 排放量为 0.73 公斤)。该模型可以适应任何木质纤维素生物质,为开发最大程度固碳的热解工艺提供信息。