Suppr超能文献

利用成分建模预测生物炭特性和热解生命周期清单。

Predicting biochar properties and pyrolysis life-cycle inventories with compositional modeling.

机构信息

Department of Civil and Environmental Engineering, University of California, Davis, United States.

Department of Civil and Environmental Engineering, University of California, Davis, United States.

出版信息

Bioresour Technol. 2024 May;399:130551. doi: 10.1016/j.biortech.2024.130551. Epub 2024 Mar 7.

Abstract

Biochar, formed through slow pyrolysis of biomass, has garnered attention as a pathway to bind atmospheric carbon in products. However, life cycle assessment data for biomass pyrolysis have limitations in data quality, particularly for novel processes. Here, a compositional, predictive model of slow pyrolysis is developed, with a focus on CO fluxes and energy products, reflecting mass-weighted cellulose, hemicellulose, and lignin pyrolysis products for a given pyrolysis temperature. This model accurately predicts biochar yields and composition within 5 % of experimental values but shows broader distributions for bio-oil and syngas (typically within 20 %). This model is demonstrated on common feedstocks to quantify biochar yield, energy, and CO emissions as a function of temperature and produce key life cycle inventory flows (e.g., 0.73 kg CO2/kg poplar biochar bound carbon at 500 °C). This model can be adapted to any lignocellulosic biomass to inform development of pyrolysis processes that maximize carbon sequestration.

摘要

生物炭是通过生物质的慢速热解形成的,它作为一种将大气碳固定在产品中的途径而受到关注。然而,生物质热解的生命周期评估数据在数据质量方面存在局限性,特别是对于新型工艺。在这里,开发了一种慢速热解的组成预测模型,重点关注 CO 通量和能量产物,反映给定热解温度下质量加权的纤维素、半纤维素和木质素热解产物。该模型能够准确预测生物炭的产率和组成,误差在 5%以内,但生物油和合成气的分布范围较宽(通常在 20%以内)。该模型以常见的原料为例,量化了生物炭产率、能量和 CO 排放作为温度的函数,并生成了关键的生命周期清单流(例如,在 500°C 时,每公斤杨树生物炭结合碳的 CO2 排放量为 0.73 公斤)。该模型可以适应任何木质纤维素生物质,为开发最大程度固碳的热解工艺提供信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验