College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China; Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, People's Republic of China.
College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China; Guangxi College and University Key Laboratory of High-value Utilization of Seafood and Prepared Food in Beibu Gulf, Qinzhou 535011, People's Republic of China.
Int J Biol Macromol. 2024 Apr;263(Pt 1):130688. doi: 10.1016/j.ijbiomac.2024.130688. Epub 2024 Mar 6.
This study reports the rational engineering of the S1' substrate-binding pocket of a thermally-stable keratinase from Pseudomonas aeruginosa 4-3 (4-3Ker) to improve substrate specificity to typical keratinase (K/C > 0.5) and catalytic activity without compromising thermal stability for efficient keratin degradation. Of 10 chosen mutation hotspots in the S1' substrate-binding pocket, the top three mutations M128R, A138V, and V142I showing the best catalytic activity and substrate specificity were identified. Their double and triple combinatorial mutants synergistically overcame limitations of single mutants, fabricating an excellent M128R/A138V/V142I triple mutant which displayed a 1.21-fold increase in keratin catalytic activity, 1.10-fold enhancement in keratin/casein activity ratio, and a 3.13 °C increase in half-inactivation temperature compared to 4-3Ker. Molecular dynamics simulations revealed enhanced flexibility of critical amino acid residues at the substrate access tunnel, improved global protein rigidity, and heightened hydrophobicity within the active site likely underpinned the increased catalytic activity and substrate specificity. Additionally, the triple mutant improved the feather degradation rate by 32.86 % over the wild-type, far exceeding commercial keratinase in substrate specificity and thermal stability. This study exemplified engineering a typical keratinase with enhanced substrate specificity, catalytic activity, and thermal stability from thermally-stable 4-3Ker, providing a more robust tool for feather degradation.
本研究报告了对来自铜绿假单胞菌 4-3(4-3Ker)的热稳定角蛋白酶 S1' 底物结合口袋进行合理工程改造,以提高对典型角蛋白酶(K/C > 0.5)的底物特异性和催化活性,同时不影响热稳定性,以实现有效的角蛋白降解。在 S1' 底物结合口袋的 10 个选择的突变热点中,鉴定出了前三个具有最佳催化活性和底物特异性的突变 M128R、A138V 和 V142I。它们的双和三组合突变体协同克服了单突变体的局限性,构建了一个出色的 M128R/A138V/V142I 三突变体,其角蛋白酶催化活性提高了 1.21 倍,角蛋白/酪蛋白活性比提高了 1.10 倍,半失活温度提高了 3.13°C,相比于 4-3Ker。分子动力学模拟揭示了底物进入隧道的关键氨基酸残基的增强的灵活性,提高了整体蛋白质刚性,以及活性位点内的疏水性增加,可能支撑了催化活性和底物特异性的提高。此外,三突变体将羽毛降解率提高了 32.86%,超过了野生型,在底物特异性和热稳定性方面远远超过了商业角蛋白酶。本研究从热稳定的 4-3Ker 中展示了典型角蛋白酶的增强的底物特异性、催化活性和热稳定性的工程设计,为羽毛降解提供了更强大的工具。